

#### **Lab-Aids Correlations for**

### CALIFORNIA NGSS PREFERRED INTEGRATED MODEL

### MIDDLE SCHOOL LEVEL - GRADES 6-8

Mark Koker, Ph D, Director of Curriculum & Professional Development, LAB-AIDS

Lisa Kelp, Curriculum Specialist, LAB-AIDS

#### October 2018

This document is intended to show how the SEPUP 3rd edition materials, *Issues and Science for California*, align with the *California Preferred Integrated Model*<sup>1</sup> for the *Next Generation Science Standards* and Common Core documents. The California NGSS 6-8 are based on the National 6-8 NGSS, but there are important differences. The *California Preferred Integrated Model*, for example, has additional Ecology content, and the PE statements generally contain fewer SEP and DCI elements, and in a few cases (see for example, the ETS Performance Expectations) the CCC element is not specified. *Issues and Science for California* was recommended for state adoption in September 2018 by the Instructional Quality Commission. At the time of review, only grades 6-7 were ready for submission; grade 8 will be completed in February 2019 and will be submitted for social content review. Even so, as the grade 8 book was not fully reviewed, it does not carry the IQC recommendation as do grades 6 and 7.

### **ABOUT OUR PROGRAMS**

Lab-Aids has maintained its home offices and operations in Ronkonkoma, NY, since 1963. We publish over 200 kits and core curriculum programs to support science teaching and learning, grades 6-12. All core curricula support an inquiry-driven pedagogy, with support for literacy skill development and with assessment programs that clearly show what students know and can do as a result of program use. All programs have extensive support for technology and feature comprehensive teacher support. For more information please visit <a href="www.lab-aids.com/california">www.lab-aids.com/california</a> and navigate to the program of interest.

<sup>&</sup>lt;sup>1</sup> As seen in Chapter 5 of the California Science Framework, https://www.cde.ca.gov/ci/sc/cf/cascienceframework2016.asp.

### **SEPUP**

Materials from the Science Education for Public Understanding Program (SEPUP) are developed at the Lawrence Hall of Science, at the University of California, Berkeley, and distributed nationally by LAB-AIDS, Inc. Since 1987, development of SEPUP materials has been supported by grants from the National Science Foundation and other public and private sources. SEPUP programs include student books, equipment kits, teacher materials, and online digital content, and are available as full year courses, or separately, as units, each taking 3-8 weeks to teach, listed below.

## Preferred Integrated Model for the Middle Level, Grades 6-8

| Grade 6                             | Grade 7                | Grade 8                 |
|-------------------------------------|------------------------|-------------------------|
| Land, Water, and Human Interactions | Ecology                | Evolution               |
| Energy                              | Geological Processes   | Earth's Resources       |
| Weather and Climate                 | Chemistry of Materials | Solar System and Beyond |
| Body Systems                        | Chemical Reactions     | Force and Motion        |
| From Cells to Organisms             | Biomedical Engineering | Fields and Interactions |
| Reproduction                        |                        | Waves                   |

#### ABOUT THE NEXT GENERATION SCIENCE STANDARDS

The National Academy of Sciences, Achieve, the American Association for the Advancement of Science, and the National Science Teachers Association have collaborated over several years to develop the *Next Generation Science Standards* (NGSS). The first step of the process was led by The National Academies of Science, a non-governmental organization commissioned in 1863 to advise the nation on scientific and engineering issues. On July 19, 2011, the National Research Council (NRC), the functional staffing arm of the National Academy of Sciences, released the *Framework for K-12 Science Education*. The *Framework* was a critical first step because it is grounded in the most current research on science and science learning and it identifies the science all K–12 students should know. The second step in the process was the development of standards grounded in the NRC Framework. A group of 26 lead states and writers, in a process managed by Achieve, has been working since the release of the Framework to develop K-12 *Next Generation Science Standards*. The final release of the Standards was in April 2013. States, districts, and schools have worked to implement these standards since then.

The Next Generation Science Standards (NGSS) provide an important opportunity to improve not only science education but also student achievement. Based on the Framework for K–12 Science Education, the NGSS are intended to reflect a new vision for American science education. The Next Generation Science Standards are student performance expectations – NOT curriculum. These performance expectations clarify the expectations of what students will know and be able to do by the end of the grade or grade band. As the reader knows, the Standards represent content from several domains: (1) science and engineering practices; (2) crosscutting concepts; (3) the disciplines of life, earth, and

physical science, as set forth in the *Next Generation Science Framework* (NRC, 2012). The Standards themselves are written as performance indicators, and content from the Common Core (<a href="http://www.corestandards.org/">http://www.corestandards.org/</a>) is included.

### ABOUT THE CALIFORNIA PREFERRED INTEGRATED MODEL

The California Next Generation Science Standards (CA NGSS) define two possible progressions for the middle grades: the Preferred Integrated Course Model (Integrated Model), which interweaves science disciplines in a developmentally appropriate progression; and the Discipline Specific Course Model, in which each grade level focuses in depth on a different science discipline. The two models differ only in the sequence; every student is expected to meet each middle grades' performance expectation (PE) by the end of the grade. "Sequence" here refers to in which course (grade 6-8) a particular performance expectation is mastered; the *Framework* makes no requirements about the order in which performance expectations are taught within a given year. As stated above, there are important differences in the CA NGSS vs the National NGSS.

#### ABOUT THE LAB-AIDS CITATIONS

The following tables are presented in a Disciplinary Core Idea arrangement – Earth Space Science (ESS), Life Science (LS), Physical Science (PS) and Engineering, Technology and Applications of Science (ETS).

## Citations included in the correlation document are as follows:

- \* indicates where Performance Expectation is assessed
- † indicates unit in development

Unit title, Activity Number

The Chemistry of Materials, 14

NGSS Performance Expectations MS-PS1-2

Science and Engineering Practices Planning and Carrying Out Investigations

Crosscutting Concepts Structure and Function

Disciplinary Core Ideas MS-PS1.A Common Core English-Language Arts RST.6-8.3 Common Core Mathematics MP.2

# **GRADE 6**

| CA Performance<br>Expectation | SEPUP Unit<br>and Activity<br>Number | Science and Engineering Practices | Disciplinary<br>Core Ideas | Crosscutting Concepts       | Common<br>Core<br>ELA/Math |
|-------------------------------|--------------------------------------|-----------------------------------|----------------------------|-----------------------------|----------------------------|
| MS-LS1-1: Conduct an          |                                      | Planning and Carrying Out         | MS-LS1.A                   | Scale, Proportion, and      | RST.6-8.3                  |
| investigation to              |                                      | Investigations                    |                            | Quantity                    | RST.6-8.7                  |
| provide evidence that         | From Cells to                        |                                   |                            |                             | RST.6-8.9                  |
| living things are made        | Organisms: 1,                        |                                   |                            | Interdependence of Science, | WHST.6-8.2                 |
| of cells; either one cell     | 2, 3, 4, 5, 6, 7,                    |                                   |                            | Engineering and Technology  | WHST.6-8.7                 |
| or many different             | 8, 9*                                |                                   |                            |                             | WHST.6-8.9                 |
| numbers and types of          |                                      |                                   |                            |                             | SL.8.5                     |
| cells.                        |                                      |                                   |                            |                             |                            |
| MS-LS1-2: Develop and         | From Cells to                        | Developing and Using Models       | MS-LS1.A                   | Structure and Function      | RST.6-8.3                  |
| use a model to                | Organisms: 4,                        |                                   |                            |                             | RST.6-8.7                  |
| describe the function         | 6, 7, 8*, 11                         |                                   |                            |                             | RST.6-8.9                  |
| of a cell as a whole and      |                                      |                                   |                            |                             | WHST.6-8.2                 |
| ways the parts of cells       |                                      |                                   |                            |                             | WHST.6-8.7                 |
| contribute to the             |                                      |                                   |                            |                             | WHST.6-8.9                 |
| function.                     |                                      |                                   |                            |                             | SL.8.5                     |
| MS-LS1-3: Use                 | From Cells to                        | Engaging in Argument from         | MS-LS1.A                   | Systems and System Models   | RST.6-8.2                  |
| argument supported            | Organisms:                           | Evidence                          |                            |                             | RST.6-8.3                  |
| by evidence for how           | 10, 14, 15                           |                                   |                            | NOS – Science is a Human    | RST.6-8.7                  |
| the body is a system of       |                                      |                                   |                            | Endeavor                    | RST.6-8.9                  |
| interacting subsystems        | Body Systems                         |                                   |                            |                             | WHST.6-8.9                 |
| composed of groups of         | 3, 4, 9, 11, 12,                     |                                   |                            |                             |                            |
| cells.                        | 13                                   |                                   |                            |                             |                            |
| MS-LS1-4: Use                 | Reproduction:                        | Engaging in Argument from         | MS-LS1.B                   | Cause and Effect            | RI.6.8                     |
| argument based on             | 9, 10*, 11*                          | Evidence                          |                            |                             | RST.6-8.1                  |

| CA Performance<br>Expectation                                                                                                                                                                       | SEPUP Unit<br>and Activity<br>Number | Science and Engineering Practices                    | Disciplinary<br>Core Ideas | Crosscutting Concepts | Common<br>Core<br>ELA/Math                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|----------------------------|-----------------------|-------------------------------------------------------------|
| empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of |                                      |                                                      |                            |                       | RST.6-8.4<br>WHST.6-8.1<br>6.SP.A.2<br>6.SP.B.4<br>6.SP.B.5 |
| animals and plants respectively.  MS-LS1-5: Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.                       | Reproduction:<br>1, 7*, 9            | Constructing Explanations and Designing Solutions    | MS-LS1.B                   | Cause and Effect      | RST.6-8.2<br>SL.8.1<br>WHST.6-8.9<br>6.RP.A.1<br>6.SP.B.5   |
| MS-LS1-8: Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.                               | Body Systems:<br>6, 7, 8*            | Obtaining, Evaluating, and Communicating Information | MS-LS1.D                   | Cause and Effect      | RST.6-8.4<br>6.SP.B.4                                       |

| CA Performance<br>Expectation                                                                                                                                                                       | SEPUP Unit<br>and Activity<br>Number                            | Science and Engineering Practices           | Disciplinary<br>Core Ideas       | Crosscutting Concepts | Common<br>Core<br>ELA/Math                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|----------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------|
| MS-LS3-2: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. | Reproduction:<br>1, 2, 3, 4, 5, 6,<br>7, 8, 9*                  | Developing and Using Models                 | MS-LS1.B<br>MS-LS3.A<br>MS-LS3.B | Cause and Effect      | RST.6-8.1<br>RST.6-8.2<br>RST.6-8.4<br>RST.6-8.7<br>RST.6-8.9<br>SL.8.1<br>WHST.6-8.2<br>WHST.6-8.9 |
| MS-ESS2-4: Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.                                                         | Land, Water,<br>and Human<br>Interaction: 2,<br>5, 7, 8, 9*     | Developing and Using Models                 | MS-ESS2.C                        | Energy and Matter     | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.9<br>WHST.6-8.2                                                   |
| MS-ESS2-5: Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.                                                     | Weather and<br>Climate: 2, 3,<br>4, 6, 7, 9, 10,<br>11, 12, 13* | Planning and Carrying Out<br>Investigations | MS-ESS2.C<br>MS-ESS2.D           | Cause and Effect      | RST.6-8.3<br>RST.6-8.7<br>RST.6-8.9<br>WHST.6-8.7<br>SL.8.1<br>SL.8.4                               |

| CA Performance<br>Expectation                                                                                                                                                        | SEPUP Unit<br>and Activity<br>Number                                                  | Science and Engineering Practices                 | Disciplinary<br>Core Ideas | Crosscutting Concepts                                                                                                                                         | Common<br>Core<br>ELA/Math                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| MS-ESS2-6: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. | Weather and<br>Climate: 2, 3,<br>4, 5, 6, 7, 8, 9,<br>10, 11, 13,<br>14*              | Developing and Using Models                       | MS-ESS2.C<br>MS-ESS2.D     | Systems and System Models                                                                                                                                     | RST.6-8.3<br>RST.6-8.7<br>WHST.6-8.7<br>SL.8.1<br>SL.8.4                                                  |
| MS-ESS3-3: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.                                                           | Land, Water,<br>and Human<br>Interactions:<br>2, 3, 4, 5, 6, 9,<br>13, 14, 15,<br>16* | Constructing Explanations and Designing Solutions | MS-ESS3.C                  | Cause and Effect  Connections to Engineering, Technology, and Applications of Science Influence of Science, Engineering, and Technology and the Natural World | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.9<br>WHST.6-8.2<br>WHST.6-8.9<br>SL.8.4<br>6.RP.A.1<br>6.SP.B.5<br>MP.4 |
| MS-ESS3-5: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.                                                  | Weather and<br>Climate: 1, 14,<br>15, 16*                                             | Asking Questions and Defining Problems            | MS-ESS3.D                  | Stability and Change                                                                                                                                          | RST.6-8.7<br>WHST.6-8.1<br>SL.8.1<br>MP.4                                                                 |

| CA Performance<br>Expectation                                                                                                                                                                                                          | SEPUP Unit<br>and Activity<br>Number      | Science and Engineering Practices                                                                         | Disciplinary<br>Core Ideas                     | Crosscutting Concepts           | Common<br>Core<br>ELA/Math                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------|
| MS-PS3-3: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.                                                                                              | Energy: 1, 7,<br>8, 9, 10, 11,<br>12, 13* | Constructing Explanations and Designing Solutions                                                         | MS-ETS1.A<br>MS-ETS1.B<br>MS-PS3.A<br>MS-PS3.B | Energy and Matter               | RST.6-8.1<br>RST.6-8.3<br>SL.8.4<br>WHST.6-8.9<br>EE.6.A.2<br>EE.6.C.9<br>MP.2 |
| MS-PS3-4: Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. | Energy: 1, 4,<br>6, 7, 8*                 | Planning and Carrying Out<br>Investigations  NOS – Scientific Knowledge is<br>Based on Empirical Evidence | MS-PS3.A<br>MS-PS3.B                           | Scale, Proportion, and Quantity | RST.6-8.3<br>WHST.6-8.1<br>WHST.6-8.9<br>EE.6.C.9<br>MP.2                      |
| MS-PS3-5: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy                                                                                                         | Energy: 2, 3,<br>4, 5, 6*                 | Engaging in Argument from<br>Evidence<br>NOS – Scientific Knowledge is<br>Based on Empirical Evidence     | MS-PS3.B                                       | Energy and Matter               | RST.6-8.3<br>WHST.6-8.1<br>WHST.6-8.9<br>EE.6.C.9<br>MP.2                      |

| CA Performance<br>Expectation                                                                                                                                                                                                                                                   | SEPUP Unit<br>and Activity<br>Number                   | Science and Engineering Practices      | Disciplinary<br>Core Ideas | Crosscutting Concepts                                                 | Common<br>Core<br>ELA/Math                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|----------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| is transferred to or from the object.                                                                                                                                                                                                                                           |                                                        |                                        |                            |                                                                       |                                                                                            |
| MS-ETS1-1: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. | Weather and<br>Climate 6, 12                           | Asking Questions and Defining Problems | MS-ETS1.A                  | Influence of Science, Engineering and Technology on the Natural World | RI.8.8<br>RST.6-8.8<br>SL.8.4<br>SL.8.5<br>WHST.6-8.1<br>WHST.6-8.2<br>RST.6-8.3<br>SL.8.4 |
| MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.                                                                                                                          | Land, Water<br>and Human<br>Interactions 7,<br>12, 16* | Engaging in Argument from<br>Evidence  | MS-ETS1.B                  | None cited in CA standards maps                                       | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.8<br>SL.8.1<br>SL.8.4                                    |

| CA Performance<br>Expectation                                                                                                                                                                                                              | SEPUP Unit<br>and Activity<br>Number    | Science and Engineering Practices | Disciplinary<br>Core Ideas | Crosscutting Concepts           | Common<br>Core<br>ELA/Math             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|----------------------------|---------------------------------|----------------------------------------|
| MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. | Weather and<br>Climate 6, 12*           | Analyzing and Interpreting Data   | MS-ETS1.B<br>MS-ETS1.C     | None cited in CA standards maps | SL.8.4<br>6.RP.A.1<br>6.RP.A.3<br>MP.2 |
| MS-ETS1-4.  Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.                                                                    | Energy 13<br>Weather and<br>Climate 12* | Developing and Using Models       | MS-ETS1.B<br>MS-ETS1.C     | None cited in CA standards maps | RST.6-8.3                              |

# **GRADE 7**

| CA Performance<br>Expectation                                                                                                                                                                     | SEPUP Unit<br>and Activity<br>Number | Science and Engineering Practices                                                                            | Disciplinary<br>Core Ideas | Crosscutting Concepts | Common<br>Core<br>ELA/Math                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|------------------------------------------------------------------------------------|
| MS-LS1-6: Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.                              | Ecology 8, 11                        | Constructing Explanations and Designing Solutions  NOS – Scientific Knowledge is based on Empirical Evidence | MS-LS1.C<br>MS-PS3.D       | Energy and Matter     | RST.6-8.3                                                                          |
| MS-LS1-7: Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. | Ecology 10                           | Developing and Using Models                                                                                  | MS-LS1.C<br>MS-PS3.D       | Energy and Matter     | RST.6-8.2<br>RST.6-8.3<br>RST.6-8.9                                                |
| MS-LS2-1: Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of                                                                 | Ecology: 5, 6, 7, 8, 9*, 12          | Analyzing and Interpret Data                                                                                 | MS-LS2.A                   | Cause and Effect      | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.7<br>RST.6-8.8<br>SL.8.4<br>SL.8.5<br>WHST.6-8.1 |

| CA Performance<br>Expectation                                                                                                    | SEPUP Unit<br>and Activity<br>Number | Science and Engineering Practices                 | Disciplinary<br>Core Ideas | Crosscutting Concepts                                                                        | Common<br>Core<br>ELA/Math                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| organisms in an ecosystem.                                                                                                       |                                      |                                                   |                            |                                                                                              | WHST.6-8.9 6.EE.C.9 6.RP.A.1 6.RP.A.3 6.SP.B.5 MP.2 MP.4                                                      |
| MS-LS2-2: Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.            | Ecology: 2, 6, 7, 8, 10*, 13, 14     | Constructing Explanations and Designing Solutions | MS-LS2.A                   | Patterns                                                                                     | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.8<br>SL.8.4<br>SL.8.5<br>WHST.6-8.9<br>6.RP.A.1<br>6.RP.A.3<br>MP.2<br>MP.4 |
| MS-LS2-3: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. | Ecology: 7, 8,<br>11, 12*, 15,<br>16 | Developing and Using Models                       | MS-LS2.B                   | Energy and Matter  NOS – Scientific Knowledge Assumes Order and Constancy in Natural Systems | RST.6-8.3<br>RST.6-8.7<br>WHST.6-8.9<br>6.RP.A.1<br>6.RP.A.3<br>MP.2<br>MP.4                                  |

| CA Performance<br>Expectation                                                                                                                         | SEPUP Unit<br>and Activity<br>Number                           | Science and Engineering Practices                                                                                              | Disciplinary<br>Core Ideas        | Crosscutting Concepts                                                                                                                                                                                                                                | Common<br>Core<br>ELA/Math                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| MS-LS2-4: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. | Ecology: 1, 2, 3, 4, 5, 6, 12, 13, 14*                         | Analyzing and Interpreting Data  NOS – Scientific Knowledge is based on Empirical Evidence  Engaging in Argument from Evidence | MS-LS2.C                          | Cause and Effect Stability and Change                                                                                                                                                                                                                | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.8<br>SL.8.5<br>WHST.6-8.1<br>WHST.6-8.9<br>6.EE.C.9<br>6.SP.B.5<br>MP.2 |
| MS-LS2-5: Evaluate competing design solutions for maintaining biodiversity and ecosystem services.                                                    | Ecology: 2, 3,<br>4, 5, 13, 14,<br>15*, 18                     | Engaging in Argument from<br>Evidence                                                                                          | MS-ETS1.B<br>MS-LS2.C<br>MS-LS4.D | Stability and Change  Connections to Engineering, Technology, and Applications of Science Influence of Science, Engineering, and Technology on Society and the Natural World  NOS – Science Addresses Questions About the Natural and Material World | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.8<br>SL.8.5<br>WHST.6-8.1<br>WHST.6-8.9                                 |
| MS-ESS2-1: Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.                              | Geological<br>Processes: 2,<br>5, 8, 9, 10, 11,<br>13, 14, 15* | Developing and Using Models                                                                                                    | MS-ESS2.A                         | Stability and Change                                                                                                                                                                                                                                 | RST.6-8.2<br>RST.6-8.3<br>RST.6-8.4<br>WHST.6-8.1<br>WHST.6-8.2<br>SL.8.1                                 |

| CA Performance<br>Expectation            | SEPUP Unit<br>and Activity<br>Number | Science and Engineering Practices | Disciplinary<br>Core Ideas | Crosscutting Concepts                                  | Common<br>Core<br>ELA/Math |
|------------------------------------------|--------------------------------------|-----------------------------------|----------------------------|--------------------------------------------------------|----------------------------|
|                                          |                                      |                                   |                            |                                                        | 6.RP.A.1                   |
| NAC 5002 2 0 1 1                         | 6 1 : 1                              |                                   | NAC 5000 A                 |                                                        | MP.2                       |
| MS-ESS2-2: Construct                     | Geological                           | Constructing Explanations and     | MS-ESS2.A                  | Scale, Proportion, and                                 | RST.6-8.1                  |
| an explanation based on evidence for how | Processes: 2,                        | Designing Solutions               | MS-ESS2.C                  | Quantity                                               | RST.6-8.2<br>RST.6-8.3     |
| geoscience processes                     | 3, 4, 6, 10, 11,<br>12, 13*          |                                   |                            |                                                        | WHST.6-8.1                 |
| have changed Earth's                     | 12, 15                               |                                   |                            |                                                        | WHST.6-8.2                 |
| surface at varying time                  |                                      |                                   |                            |                                                        | WHST.6-8.9                 |
| and spatial scales.                      |                                      |                                   |                            |                                                        | SL.8.1                     |
|                                          |                                      |                                   |                            |                                                        |                            |
|                                          |                                      |                                   |                            |                                                        | 6.RP.A.1                   |
|                                          |                                      |                                   |                            |                                                        | 6.NS.C.5                   |
|                                          |                                      |                                   |                            |                                                        | 7.RP.A.2                   |
|                                          |                                      |                                   |                            |                                                        | MP.4                       |
| MS-ESS2-3: Analyze                       | Geological                           | Analyze and Interpret Data        | MS-ESS1.C                  | Patterns                                               | RST.6-8.2                  |
| and interpret data on                    | Processes: 10,                       |                                   | MS-ESS2.B                  |                                                        | WHST.6-8.1                 |
| the distribution of                      | 11, 12, 13,                          | Connections to the Nature of      |                            |                                                        | WHST.6-8.2                 |
| fossils and rocks,                       | 14*, 16                              | Science – Scientific Knowledge    |                            |                                                        | SL.8.1                     |
| continental shapes,                      |                                      | is Open to Revision in Light of   |                            |                                                        |                            |
| and seafloor structures                  |                                      | New Evidence                      |                            |                                                        | 6.RP.A.1                   |
| to provide evidence of                   |                                      |                                   |                            |                                                        | 7.RP.A.2                   |
| the past plate motions.                  |                                      |                                   |                            | 1 - 55                                                 | MP.2                       |
| MS-ESS3-1: Construct a                   | Geological                           | Constructing Explanations and     | MS-ESS3.A                  | Cause and Effect                                       | RST.6-8.2                  |
| scientific explanation                   | Processes: 12,                       | Designing Solutions               |                            |                                                        | RST.6-8.3                  |
| based on evidence for                    | 16, 17*                              |                                   |                            | Connections to Engineering,                            | WHST.6-8.1                 |
| how the uneven                           |                                      |                                   |                            | Technology, and Applications of Science – Influence of | WHST.6-8.7                 |
| distributions of Earth's                 |                                      |                                   |                            |                                                        | SL.8.1                     |
| mineral, energy, and                     |                                      |                                   |                            | Science Engineering and                                |                            |

| CA Performance<br>Expectation                                                                                                                                         | SEPUP Unit<br>and Activity<br>Number                     | Science and Engineering Practices                                                                                           | Disciplinary<br>Core Ideas | Crosscutting Concepts                                                                                                                                            | Common<br>Core<br>ELA/Math                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| groundwater resources<br>are the result of past<br>and current geoscience<br>processes.                                                                               |                                                          |                                                                                                                             |                            | Technology on Society and the Natural World                                                                                                                      |                                                                                                                                  |
| MS-ESS3-2: Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. | Geological<br>Processes: 1,<br>3, 4, 6, 7, 8,<br>11, 18* | Analyzing and Interpreting Data                                                                                             | MS-ESS3.B                  | Patterns  Connections to Engineering, Technology, and Applications of Science Influence of Science, Engineering, and Technology on Society and the Natural World | RST.6-8.1<br>RST.6-8.2<br>RST.6-8.3<br>RST.6-8.4<br>WHST.6-8.1<br>WHST.6-8.2<br>WHST.6-8.9<br>SL.8.1<br>6.NS.C.5<br>MP.2<br>MP.4 |
| MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures.                                                              | Chemistry of<br>Materials: 2,<br>6, 7, 11, 12*           | Developing and Using Models                                                                                                 | MS-PS1.A                   | Scale, Proportion, and Quantity                                                                                                                                  | RST.6-8.2<br>RST.6-8.3<br>RST.6-8.7                                                                                              |
| MS-PS1-2: Analyze and interpret data on the properties of substances before and after the substances interact to determine if                                         | Chemical<br>Reactions: 1,<br>2, 3, 4, 5*, 11             | Analyzing and Interpreting Data  Connections to the Nature of Science – Scientific Knowledge is Based on Empirical Evidence | MS-PS1.A<br>MS-PS1.B       | Patterns                                                                                                                                                         | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.4<br>RST.6-8.7<br>RST.6-8.9<br>SL.8.1<br>WHST.6-8.9                                            |

| CA Performance<br>Expectation                                                                                                                                         | SEPUP Unit<br>and Activity<br>Number                        | Science and Engineering Practices                                                                       | Disciplinary<br>Core Ideas | Crosscutting Concepts                                                                                                                                                                                                        | Common<br>Core<br>ELA/Math                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| a chemical reaction has occurred.                                                                                                                                     |                                                             |                                                                                                         |                            |                                                                                                                                                                                                                              |                                                                                       |
| MS-PS1-3: Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.                                   | Chemistry of<br>Materials: 1,<br>2, 3, 4, 5, 11,<br>12, 13* | Obtaining, Evaluating, and Communicating Information                                                    | MS-PS1.A<br>MS-PS1.B       | Structure and Function  Connections to Engineering, Technology, and Applications of Science Interdependence of Science, Engineering and Technology and Influence of Science, Engineering and Technology on the Natural World | RST.6-8.3<br>RST.6-8.7<br>WHST.6-8.1<br>WHST.6-8.9<br>7.RP.A.2                        |
| MS-PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. | Chemistry of<br>Materials: 7,<br>8, 9, 10                   | Developing and Using Models                                                                             | MS-PS1.A<br>MS-PS3.A       | Cause and Effect                                                                                                                                                                                                             | RST.6-8.3                                                                             |
| MS-PS1-5: Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.                        | Chemical<br>Reactions: 1,<br>2, 3, 4, 5, 6,<br>7*           | Developing and Using Models  Science Models, Laws,  Mechanisms, and Theories  Explain Natural Phenomena | MS-PS1.B                   | Energy and Matter                                                                                                                                                                                                            | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.4<br>RST.6-8.7<br>RST.6-8.9<br>SL.8.1<br>WHST.6-8.9 |

| CA Performance<br>Expectation                                                                                                                                                                                                                                                   | SEPUP Unit<br>and Activity<br>Number                  | Science and Engineering Practices                 | Disciplinary<br>Core Ideas         | Crosscutting Concepts                                                              | Common<br>Core<br>ELA/Math                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| MS-PS1-6: Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.                                                                                                                              | Chemical<br>Reactions: 2,<br>3, 5, 8, 9, 10,<br>11*   | Constructing Explanations and Designing Solutions | MS-ETS1.B<br>MS-ETS1.C<br>MS-PS1.B | Energy and Matter                                                                  | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.4<br>RST.6-8.7<br>SL.8.1<br>WHST.6-8.9 |
| MS-ETS1-1: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. | Biomedical<br>Engineering:<br>1, 2, 3*, 4, 5,<br>7, 9 | Asking Questions and Defining Problems            | MS-ETS1.A                          | Influence of Science, Engineering, and Technology on Society and the Natural World |                                                                          |
| MS-ETS1-2: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria                                                                                                                                                          | Biomedical<br>Engineering:<br>4, 5, 7*                | Engaging in Argument from<br>Evidence             | MS-ETS1.B                          | No CCC cited in the CA standard                                                    | SL.8.4<br>6.RP.A.1<br>6.RP.A.3<br>MP.2                                   |

| CA Performance<br>Expectation                                                                                                                                                                                                              | SEPUP Unit<br>and Activity<br>Number         | Science and Engineering Practices | Disciplinary<br>Core Ideas | Crosscutting Concepts           | Common<br>Core<br>ELA/Math             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|----------------------------|---------------------------------|----------------------------------------|
| and constraints of the problem.                                                                                                                                                                                                            |                                              |                                   |                            |                                 |                                        |
| MS-ETS1-3: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. | Biomedical<br>Engineering:<br>1, 2, 4, 5*    | Analyzing and Interpreting Data   | MS-ETS1.B<br>MS-ETS1.C     | No CCC cited in the CA standard | SL.8.4<br>6.RP.A.1<br>6.RP.A.3<br>MP.2 |
| MS-ETS1-4: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.                                                                     | Biomedical<br>Engineering:<br>2, 4, 5, 8, 9* | Developing and Using Models       | MS-ETS1.B<br>MS-ETS1.C     | No CCC cited in the CA standard | SL.8.4<br>6.RP.A.1<br>6.RP.A.3<br>MP.2 |

# **GRADE 8**

| CA Performance<br>Expectation | SEPUP Unit<br>and Activity<br>Number | Science and Engineering Practices                    | Disciplinary<br>Core Ideas | Crosscutting Concepts         | Common<br>Core<br>ELA/Math |
|-------------------------------|--------------------------------------|------------------------------------------------------|----------------------------|-------------------------------|----------------------------|
| MS-LS3-1: Develop and         | Reproduction:                        | Analyzing and Interpreting                           | MS-LS1.B                   | Cause and Effect              | RST.6-8.1                  |
| use a model to                | 1, 3, 7, 8, 12,                      | Data                                                 | MS-LS3.A                   |                               | RST.6-8.2                  |
| describe why structural       | 13*                                  |                                                      | MS-LS3.B                   | Connections to the Nature of  | RST.6-8.4                  |
| changes to genes              |                                      | Asking Questions and Defining                        |                            | Science                       | RST.6-8.7                  |
| (mutations) located on        |                                      | Problems                                             |                            |                               | SL.8.1                     |
| chromosomes may               |                                      |                                                      |                            | Patterns                      | WHST.6-8.2                 |
| affect proteins and           |                                      | Connections to the Nature of                         |                            |                               | WHST.6-8.9                 |
| may result in harmful,        |                                      | Science                                              |                            | Scale, Proportion, and        |                            |
| beneficial, or neutral        |                                      |                                                      |                            | Quantity                      | 6.SP.B.5                   |
| effects to the structure      |                                      | Constructing Explanations and                        |                            |                               | 6.RP.A.1                   |
| and function of the           |                                      | Designing Solutions                                  |                            | Structure and Function        |                            |
| organism.                     |                                      |                                                      |                            |                               |                            |
|                               |                                      | Developing and Using Models                          |                            |                               |                            |
|                               |                                      | Obtaining Evaluating and                             |                            |                               |                            |
|                               |                                      | Obtaining, Evaluating, and Communicating Information |                            |                               |                            |
|                               |                                      |                                                      |                            |                               |                            |
|                               |                                      | Planning and Carrying Out                            |                            |                               |                            |
|                               |                                      | Investigations                                       |                            |                               |                            |
| MS-LS4-1: Analyze and         |                                      | Analyzing and Interpreting                           | MS-LS4.A                   | Cause and Effect              | RST.6-8.3                  |
| interpret data for            |                                      | Data                                                 |                            |                               | RST.6-8.7                  |
| patterns in the fossil        | Evolution: 7,                        |                                                      |                            | Connections to the Nature of  | RST.6-8.9                  |
| record that document          | 8, 9, 10 11*                         | Scientific Knowledge is Based                        |                            | Science: Scientific Knowledge | WHST.6-8.2                 |
| the existence, diversity,     |                                      | on Empirical Evidence                                |                            | Assumes an Order and          |                            |
| extinction, and change        |                                      |                                                      |                            | Consistency in                | 6.SP.B.5                   |

| CA Performance<br>Expectation         | SEPUP Unit<br>and Activity<br>Number | Science and Engineering Practices | Disciplinary<br>Core Ideas | Crosscutting Concepts         | Common<br>Core<br>ELA/Math |
|---------------------------------------|--------------------------------------|-----------------------------------|----------------------------|-------------------------------|----------------------------|
| of life forms                         |                                      |                                   |                            | Natural Systems               |                            |
| throughout the history                |                                      |                                   |                            | _                             |                            |
| of life on Earth under                |                                      |                                   |                            | Patterns                      |                            |
| the assumption that                   |                                      |                                   |                            |                               |                            |
| natural laws operate                  |                                      |                                   |                            |                               |                            |
| today as in the past.                 |                                      |                                   |                            |                               |                            |
| MS-LS4-2: Apply                       |                                      | Constructing Explanations and     | MS-LS4.A                   | Patterns                      | RST.6-8.3                  |
| scientific ideas to                   |                                      | Designing Solutions               |                            |                               | RST.6-8.7                  |
| construct an                          |                                      |                                   |                            | Connections to the Nature of  | RST.6-8.9                  |
| explanation for the                   |                                      |                                   |                            | Science: Scientific Knowledge | WHST.6-8.2                 |
| anatomical similarities               | Evolution: 7,                        |                                   |                            | Assumes an Order and          |                            |
| and differences among                 | 8, 9, 10 11,                         |                                   |                            | Consistency in                | 6.SP.B.5                   |
| modern organisms and                  | 12*                                  |                                   |                            | Natural Systems               |                            |
| between modern and                    |                                      |                                   |                            |                               |                            |
| fossil organisms to                   |                                      |                                   |                            |                               |                            |
| infer evolutionary                    |                                      |                                   |                            |                               |                            |
| relationships.                        |                                      | A contraction and technique       | NAC LCA A                  | Detterne                      | DCT C O 7                  |
| MS-LS4-3: Analyze                     |                                      | Analyzing and Interpreting  Data  | MS-LS4.A                   | Patterns                      | RST.6-8.7                  |
| displays of pictorial data to compare |                                      | Data                              |                            |                               | 6.SP.B.5                   |
| patterns of similarities              |                                      |                                   |                            |                               | 0.32.6.3                   |
| in the embryological                  | Evolution: 12,                       |                                   |                            |                               |                            |
| development across                    | 13*                                  |                                   |                            |                               |                            |
| multiple species to                   | 13                                   |                                   |                            |                               |                            |
| identify relationships                |                                      |                                   |                            |                               |                            |
| not evident in the fully              |                                      |                                   |                            |                               | ,                          |
| formed anatomy.                       |                                      |                                   |                            |                               |                            |

| CA Performance<br>Expectation                                                                                                                                                                 | SEPUP Unit<br>and Activity<br>Number | Science and Engineering Practices                                                                                                         | Disciplinary<br>Core Ideas | Crosscutting Concepts                                                                                                                                                                                                          | Common<br>Core<br>ELA/Math                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| MS-LS4-4: Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a | Evolution: 1, 2, 3, 4*               | Constructing Explanations and Designing Solutions  Developing and Using Models  Engaging in Argument from Evidence  Using Mathematics and | MS-LS4.B                   | Cause and Effect                                                                                                                                                                                                               | RST.6-8.2<br>RST.6-8.3<br>WHST.6-8.2<br>WHST.6-8.9<br>6.RP.A.1<br>6.SP.B.5 |
| MS-LS4-5: Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.                                 | Evolution: 14,<br>15, 16*            | Obtaining, Evaluating, and Communicating Information                                                                                      | MS-LS4.B                   | Cause and Effect  Connections to the Engineering, Technology and Applications of Science – Interdependence of Science, Engineering and Technology  Connections to NOS – Interdependence of Science, Engineering and Technology | RST.6-8.1<br>RST.6-8.7<br>WHST.6-8.2<br>WHST.6-8.8<br>WHST.6-8.9           |
| MS-LS4-6: Use mathematical representations to support explanations of how natural selection may lead to increases and                                                                         | Evolution: 1,<br>2, 3, 4, 5, 6*      | Using Mathematics and Computational Thinking                                                                                              | MS-LS4.C                   | Cause and Effect                                                                                                                                                                                                               | RST.6-8.2<br>RST.6-8.3<br>SL.8.1<br>SL.8.4<br>WHST.6-8.2<br>WHST.6-8.9     |

| CA Performance<br>Expectation                                                                                                                                                    | SEPUP Unit<br>and Activity<br>Number                                | Science and Engineering Practices | Disciplinary<br>Core Ideas | Crosscutting Concepts                                                                                                                    | Common<br>Core<br>ELA/Math                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| decreases of specific traits in populations over time.                                                                                                                           |                                                                     |                                   |                            |                                                                                                                                          | 6.RP.A.1<br>6.SP.B.5                                                                    |
| MS-ESS1-1: Develop<br>and use a model of the<br>Earth-sun-moon<br>system to describe the<br>cyclic patterns of lunar<br>phases, eclipses of the<br>sun and moon, and<br>seasons. | Solar System<br>and Beyond:<br>2, 3, 4, 5, 6, 7,<br>9*              | Developing and Using Models       | MS-ESS1.A<br>MS-ESS1.B     | Connections to the Nature of<br>Science – Scientific<br>Knowledge Assumes an Order<br>and Consistency in Natural<br>Systems              | RST.6-8.2<br>WHST.6-8.2<br>SL.8.5<br>6.RP.A.1                                           |
| MS-ESS1-2: Develop<br>and use a model to<br>describe the role of<br>gravity in the motions<br>within galaxies and the<br>solar system.                                           | Solar System<br>and Beyond:<br>1, 10, 11, 12,<br>13, 14, 15,<br>16* | Developing and Using Models       | MS-ESS1.A<br>MS-ESS1.B     | Systems and System Models  NOS Scientific Knowledge Assumes an Order and Consistency in Natural Systems                                  | RST.6-8.1<br>WHST.6-8.2<br>WHST.6-8.9<br>SL.8.4<br>6.RP.A.1<br>6.RP.A.3<br>MP.2<br>MP.4 |
| MS-ESS1-3: Analyze and interpret data to determine scale properties of objects in the solar system.                                                                              | Solar System<br>and Beyond:<br>10, 11, 12,<br>13*                   | Analyze and Interpret Data        | MS-ESS1.B                  | Connections to Engineering,<br>Technology, and Applications<br>of Science – Interdependence<br>of Science, Engineering and<br>Technology | WHST.6-8.2<br>SL.8.4<br>6.RP.A.1<br>6.RP.A.3<br>MP.2<br>MP.4                            |

| CA Performance<br>Expectation                                                                                                                                              | SEPUP Unit<br>and Activity<br>Number    | Science and Engineering Practices                 | Disciplinary<br>Core Ideas | Crosscutting Concepts                                                                                                                                                                                                                  | Common<br>Core<br>ELA/Math                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                                                                            |                                         |                                                   |                            |                                                                                                                                                                                                                                        |                                                                            |
| MS-ESS1-4: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. | Earth's<br>Resources: 9,<br>10, 11, 12* | Constructing Explanations and Designing Solutions | MS-ESS1.C                  | Scale, Proportion, and<br>Quantity                                                                                                                                                                                                     | RST.6-8.3<br>WHST.6-8.1<br>WHST.6-8.9                                      |
| MS-ESS3-4: Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.       | Earth's<br>Resources: 2,<br>4, 6, 13*   | Engaging in Argument from Evidence                | MS-ESS3.C                  | Cause and Effect  Connections to Engineering, Technology, and Applications of Science – Influence of Science, Engineering and Technology and the Natural World  NOS – Science Addresses Questions About the Natural and Material World | RST.6-8.1<br>RST.6-8.3<br>WHST.6-8.1<br>WHST.6-8.9<br>6.SP.B.5<br>7.RP.A.2 |
| MS-PS2-1: Apply<br>Newton's Third Law to<br>design a solution to a<br>problem involving the                                                                                | Force and<br>Motion: 1, 10,<br>11, 12*  | Constructing Explanations and Designing Solutions | MS-PS2.A                   | Systems and System Models  Connections to Engineering, Technology, and Applications of Science – Influence of                                                                                                                          | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.7                                        |

| CA Performance<br>Expectation                                                                                                                                        | SEPUP Unit<br>and Activity<br>Number               | Science and Engineering Practices                                                                         | Disciplinary<br>Core Ideas | Crosscutting Concepts                                           | Common<br>Core<br>ELA/Math                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| motion of two colliding objects.                                                                                                                                     |                                                    |                                                                                                           |                            | Science, Engineering and<br>Technology and the Natural<br>World |                                                                                                           |
| MS-PS2-2: Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. | Force and<br>Motion: 1, 6,<br>7, 8, 9, 13*         | Planning and Carrying Out<br>Investigations  NOS – Scientific Knowledge is<br>Based on Empirical Evidence | MS-PS2.A                   | Stability and Change                                            | RST.6-8.1<br>RST.6-8.2<br>RST.6-8.3<br>RST.6-8.7<br>6.RP.AP.2<br>6.SP.B.5<br>7.EE.B.4<br>7.RP.A.2<br>MP.2 |
| MS-PS2-3: Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.                                                | Fields and<br>Interactions:<br>7, 8, 9, 12,<br>13* | Asking Questons and Defining Problems                                                                     | MS-PS2.B                   | Cause and Effect                                                | RST.6-8.1<br>MP.2                                                                                         |
| MS-PS2-4: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend                              | Fields and<br>Interactions:<br>3, 4, 7*            | Engaging in Argument from<br>Evidence<br>NOS - Scientific Knowledge is<br>Based on Empirical Evidence     | MS-PS2.B                   | Systems and System Models                                       | WHST.6-8.1                                                                                                |

| CA Performance<br>Expectation                                                                                                                                                                           | SEPUP Unit<br>and Activity<br>Number                  | Science and Engineering Practices           | Disciplinary<br>Core Ideas | Crosscutting Concepts           | Common<br>Core<br>ELA/Math                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| on the masses of interacting objects.                                                                                                                                                                   |                                                       |                                             |                            |                                 |                                                 |
| MS-PS2-5: Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. | Fields and<br>Interactions:<br>5, 7, 9, 10,<br>12*    | Planning and Carrying Out<br>Investigations | MS-PS2.B                   | Cause and Effect                | RST.6-8.3<br>WHST.6-8.7                         |
| MS-PS3-1: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.                                    | Force and<br>Motion: 1, 2,<br>3, 4, 5*                | Analyzing and Interpreting Data             | MS-PS3.A                   | Scale, Proportion, and Quantity | RST.6-8.7<br>WHST.6-8.2<br>6.SP.B.5<br>7.RP.A.2 |
| MS-PS3-2: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.                           | Fields and<br>Interactions:<br>3, 4, 6, 7, 10,<br>11* | Developing and Using Models                 | MS-PS3.A<br>MS-PS3.C       | Systems and System Models       | SL.8.5                                          |

| CA Performance<br>Expectation                                                                                                                                                                    | SEPUP Unit<br>and Activity<br>Number  | Science and Engineering Practices                                                                               | Disciplinary<br>Core Ideas | Crosscutting Concepts                                                                                                                                                              | Common<br>Core<br>ELA/Math                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| MS-PS4-1: Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.                                    | Waves: 1, 2,<br>3, 4, 7*              | Using Mathematics and<br>Computational Thinking<br>NOS – Scientific Knowledge is<br>Based on Empirical Evidence | MS-PS4.A                   | Patterns                                                                                                                                                                           | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.9<br>6.RP.A.1<br>7.RP.A.2<br>MP.2<br>MP.4 |
| MS-PS4-2: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.                                                                      | Waves: 3, 8,<br>9, 10, 11, 12,<br>13* | Developing and Using Models                                                                                     | MS-PS4.A<br>MS-PS4.B       | Structure and Function                                                                                                                                                             | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.9<br>MP.2                                 |
| MS-PS4-3: Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. | <i>Waves:</i> 5, 6                    | Obtaining, Evaluating, and Communicating Information                                                            | MS-PS4.C                   | Connections to Engineering, Technology, and Applications of Science – Influence of SET on Society and the Natural World  Structure and Function  NOS – Science is a Human Endeavor | RST.6-8.1<br>RST.6-8.3<br>RST.6-8.9<br>WHST.6-8.9                           |

| CA Performance<br>Expectation                                                                                                                                                                                                                                                   | SEPUP Unit<br>and Activity<br>Number                                            | Science and Engineering Practices      | Disciplinary<br>Core Ideas | Crosscutting Concepts                                | Common<br>Core<br>ELA/Math                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| MS-ETS1-1: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. | Force and Motion: 1, 10, 11, 12, 13, 14, 15*  Fields and Interactions: 2, 3, 6* | Asking Questions and Defining Problems | MS-ETS1.A                  | Influence of SET on Society<br>and the Natural World | RST.6-8.1<br>WHST.6-8.8<br>MP.2<br>7.EE.3                            |
| MS-ETS1-2: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.                                                                                                                          | Fields and<br>Interactions:<br>6, 15*                                           | Engaging in Argument from<br>Evidence  | MS-ETS1.B                  | No CCC cited in the CA standard                      | RST.6-8.1<br>RST.6-8.9<br>WHST.6-8.7<br>WHST.6-8.9<br>MP.2<br>7.EE.3 |
| MS-ETS1-3: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics                                                                                                                                | Fields and<br>Interactions:<br>6, 11, 13, 15*                                   | Analyzing and Interpreting Data        | MS-ETS1.B<br>MS-ETS1.C     | No CCC cited in the CA standard                      | RST.6-8.1<br>RST.6-8.7<br>RST.6-8.9<br>MP.2<br>7.EE.3                |

| CA Performance<br>Expectation                                                                                                                                          | SEPUP Unit<br>and Activity<br>Number                  | Science and Engineering Practices | Disciplinary<br>Core Ideas | Crosscutting Concepts           | Common<br>Core<br>ELA/Math   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------|----------------------------|---------------------------------|------------------------------|
| of each that can be combined into a new solution to better meet the criteria for success.                                                                              |                                                       |                                   |                            |                                 |                              |
| MS-ETS1-4: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. | Fields and<br>Interactions:<br>1, 2, 3, 6, 11,<br>13* | Developing and Using Models       | MS-ETS1.B<br>MS-ETS1.C     | No CCC cited in the CA standard | SL.8.5<br>MP.2<br>7.SP.7.a,b |