NGSS UNIT OVERVIEW

BIOMEDICAL ENGINEERING

Performance Expectation MS-ETS1-1: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Performance Expectation MS-ETS1-2: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Performance Expectation MS-ETS1-3: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Performance Expectation MS-ETS1-4: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

	Activity Description	Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Common Core State Standards
1.	Investigation: Save Fred! Students are introduced to the process of engineering with a scenario that engages them in solving a simple problem. The activity elicits and builds on students' ideas about how to develop a successful solution. The processes used by scientists and engineers are compared and con- trasted.	MS-ETS1.A MS-ETS1.B	Asking Questions and Defining Problems		
2.	Investigation: Me, an Engineer? Students are challenged to design tools and strategies to solve the practical prob- lem of using one arm to complete daily tasks. Within the criteria and constraints of the problems, students navigate the environment and optimize their solutions. The activity concludes with an opportu- nity for students to define and analyze a design problem in their everyday lives.	MS-ETS1.A MS-ETS1.C MS-ETS1.B	Asking Questions and Defining Problems	Structure and Function Interdependence of Science, Engineering, and Technology Influence of Science, En- gineering, and Technology on Society and the Natural World	
3.	Reading: Bionic Bodies Students explore the application of biomedical engineering through the case studies of three individuals. These cases show that individual needs, desires, and values help drive the technologies and the limitations of their use. Students read about the role of criteria and constraints in the design process. Students are for- mally assessed on Performance Expecta- tion MS-ETS1-1.	MS-ETS1.A	Asking Questions and Defining Problems	Interdependence of Science, Engineering, and Technology Influence of Science, En- gineering, and Technology on Society and the Natural World Structure and Function	ELA/Literacy: RST.6-8.1 RST.6-8.9 RST.6-8.2

BIOMEDICAL ENGINEERING (continued)

Activity Description	Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Common Core State Standards
4. Design: Artificial Bone Model Students are challenged to design, build, and test models of an artificial bone to meet criteria. They analyze the quantita- tive data from different prototypes and combine ideas to optimize their design. The hands-on experience demonstrates the engineering design process without it yet defined.	MS-ETS1.A MS-ETS1.B MS-ETS1.C MS-LS1.A	Asking Questions and Defining Problems Developing and Using Models Constructing Explanations and Designing Solutions Analyzing and Interpreting Data Using Math- ematics and Computational Thinking	Structure and Function	Mathematics: 6.RP.A.1 6.RP.A.3 MP.2 ELA/Literacy: SL8.4
5. Design: Artificial Heart Valve Students apply the engineering design process to developing a model for an artificial heart valve. After reading about the societal need for this technology, students create initial prototype designs. Students test and evaluate their designs before redesigning them. They optimize their solutions in an iterative process that identifies the best characteristics of each prototype. Students compare designs with their peers and evaluate which ones meet the criteria and constraints of the prob- lem. Students are formally assessed on Performance Expectation MS-ETS1-3.	MS-ETS1.B MS-ETS1.C MS-LS1.A	Asking Questions and Defining Problems Developing and Using Models Construction Explanations and Designing Solutions Analyzing and Interpreting Data Engaging in Argument from Evidence	Influence of Science, En- gineering, and Technology on Society and the Natural World Structure and Function	Mathematics: MP.2 ELA/Literacy: SL8.4
6. Reading: The Work of an Engineer Students explore the discipline of engineering in more detail. They read about the interplay between science, engineering, and technology in the development of new products. They consider the positive benefits and negative environmental consequences of biomedical advances.	MS-ETS1.A	Asking Questions and Defining Problems	Interdepen- dence of Science, En- gineering, and Technology Influence of Science, En- gineering, and Technology on Society and the Natural World Connections to Nature of Science	ELA/Literacy: RST 6-8.1 RST.6-8.9 RST.6-8.2 WHST.6-8.9

BIOMEDICAL ENGINEERING (continued)

Activity Description	Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Common Core State Standards
7. Investigation: Snack Bar Students examine food that has been designed for specific medical conditions. They evaluate designs using a systematic process to determine how each design meets the needs of a specific condition. The evaluation depends on mathematical reasoning and analyzing data to find the solution that best meets the criteria. Then students develop their own snack bar designs to address the needs of another condition. Students are formally assessed on Performance Expectation MS-ETS1-2.	MS-ETS1.B MS-ETS1.A MS-LS1.C	Engaging in Argument from Evidence Constructing Explanations and Designing Solutions Using Math- ematics and Computational Thinking	Interdepen- dence of Science, En- gineering, and Technology Influence of Science, En- gineering, and Technology on Society and the Natural World	Mathematics: 7.EE.3 MP.2
8. Laboratory: Investigating Biomechanics Students explore the biomechanics of muscles and tendons in a chicken wing as background knowledge to later design a gripping device. This information on the structure and function of a wing is used to develop a model of natural movement. Students are introduced to the concept of biomimicry, which is a popular engineering approach that leads to a more limited, but often successful, solution.	MS-ETS1.A MS-ETS1.B MS-LS1.A	Developing and Using Models Constructing Explanations and Designing Solutions Connections to Nature of Science	Structure and Function	
9. Design: Get a Grip Students use the approach of biomimicry to design, test, evaluate, and redesign a mechanical gripping device to meet criteria. They use the engineering design process to optimize the device in one of two ways. In doing so, they investigate the relationship between structure and function of the device and how the technology they developed can be applied. Students are formally assessed on Performance Expectation MS-ETS1-4.	MS-ETS1.A MS-ETS1.B MS-ETS1.C MS-LS1.A	Asking Questions and Defining Problems Developing and Using Models Using Math- ematics and Computational Thinking Constructing Explanations and Designing Solutions	Structure and Function Interdepen- dence of Science, En- gineering, and Technology Influence of Science, En- gineering, and Technology on Society and the Natural World	ELA/Literacy: SL8.4