

LAB-AIDS CORRELATIONS TO NEW YORK SCIENCE STANDARDS

HIGH SCHOOL CHEMISTRY¹

A Natural Approach to Chemistry (NAC) is written by Hsu, Chaniotakis, Carlisle, and Damelin, and is published by, and available exclusively from, LAB-AIDS, Ronkonkoma NY.

This correlation was prepared by Mark Koker, Ph D, Director of Curriculum and Training at LAB-AIDS, and is intended to show selected locations in *NAC* programs that support the New York State Core Curriculum Standards for chemistry.

For more information about this correlation or for questions about review copies, presentations, or any matters related to sales or service, please visit us on the web at <u>www.lab-aids.com</u>.

¹ http://www.p12.nysed.gov/ciai/mst/pub/chemist.pdf

The Natural Approach to Chemistry				
THEMES				
Energy is a unifying theme that explains why chemistry occurs				
The atomic model of matter	is consistently wov	en through every chapter		
Understanding of 'why' cher	nistry occurs is em	phasized		
Principles are illustrated wit	h examples from th	e human body and the environment		
ORGANIZATION OF CONTEN	Т			
Fundamentals	Chapters 1 -4	Present comprehensive overview of all main ideas in chemistry such as the atomic nature of matter, systems, temperature, and energy. <i>"Big Picture"</i>		
Core Concepts	Chapters 5 -14	Present in-depth coverage of all major topic areas. They developed usable understanding of the big ideas laid out in the first four chapters. The treatment includes strong conceptual development as well as algebra-based quantitative problem solving. All academic content and instruction standards for chemistry have been met by the end of Chapter 14.		
Applications	Chapter 15 - 21	Provide deeper exploration of significant areas of interest in chemistry. Examples include rechargeable batteries, materials science, planetary atmospheres, etc.		
COMPLETE LEARNING SYSTE	M			
Coordinated student textbook				
Integrated laboratory investigations manual containing 58 labs to choose from				
New laboratory control, data	a collection and pro	be system		
Evaluation elements throughout the curriculum (student book and lab investigation manual) through which student knowledge or skills are assessed or applied				

Correlation Citation Reference Key:

Locations are given in the student book (SB) and/or laboratory manual (LM).

1.2

Means Student Book Chapter 1 Section 1.2 pages 19 – 25

LM 1A, 3D, 11A

Means Lab Investigations Manual Chapter 1 Investigation 1A;

Chapter 3 Investigation 3D;

Chapter 11 Investigation 11A

Relevant questions from the student book (SB) and lab manual (LM) problem sets and questions are indicated, e.g.,

2: 2-4, 31, 47-48

Means Student Book Chapter 2 questions 2-4, question 31 and questions 47-48

STANDARD 4: The Physical Setting

Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science.

Key Idea 3: Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity.

NEW YORK CHEMISTRY PERFORMANCE INDICATOR NAC LOCATION WHERE ASSESSED 3.1 Explain the properties of materials in terms of the arrangement and properties of the atoms that compose them. Major Understandings: Image: Compose them. Com. Compose them. Compose them. Compose them. Compose th
atoms that compose them. Major Understandings:
3.1a The modern model of the atom has evolved 5.1 5: 23-24, 28, 29-
over a long period of time through the work of LM 5A 33, 52
many scientists.
3.1b Each atom has a nucleus, with an overall 5.1 5: 17, 19, 29, 31,
positive charge, surrounded by negatively charged LM 5A 32, 37-40, 71-72,
electrons. 74
3.1c Subatomic particles contained in the nucleus 5.1
include protons and neutrons. LM 5A
3.1d The proton is positively charged, and the 5.1
neutron has no charge. The electron is negatively LM 5A
charged.
3.1e Protons and electrons have equal but opposite5.15: 32, 38-40
charges. The number of protons equals the number LM 5A
of electrons in an atom.
3.1fThe mass of each proton and each neutron is5.15: 71-72,
approximately equal to one atomic mass unit. An
electron is much less massive than a proton or a
neutron.
3.1g The number of protons in an atom (atomic5.15: 32, 38-40, 73, 76number) identifies the element. The sum of the5.15: 32, 38-40, 73, 76
number) identifies the element. The sum of the LM 5A
protons and neutrons in an atom (mass number)
identifies an isotope. Common notations that represent isotopes include:
14C, 14C, carbon-14, C-14. 6
3.1h In the wave-mechanical model (electron cloud 5.2 5: 42-51, 68
model) the electrons are in orbitals, which are
defined as the regions of the most probable
electron location (ground state).
3.1i Each electron in an atom has its own distinct 5.2 5: 42-51, 68
amount of energy. LM 5A
3.1j When an electron in an atom gains a specific 5.2 5: 68-70
amount of energy, the electron is at a higher energy

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
state (excited state).		
3.1k When an electron returns from a higher energy state to a lower energy state, a specific amount of energy is emitted. This emitted energy can be used to identify an element.	5.2 LM 5B, 5C	5: 68-70
3.11 The outermost electrons in an atom are called the valence electrons. In general, the number of valence electrons affects the chemical properties of an element.	6.3 LM 6C	6: 31-39
3.1m Atoms of an element that contain the same number of protons but a different number of neutrons are called isotopes of that element.	5.1 LM 5A	5: 73-74
3.1n The average atomic mass of an element is the weighted average of the masses of its naturally occurring isotopes.	5.1 LM 5A	5: 22, 73, 74, 76
3.10 Stability of an isotope is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.	5.1, 20.2 LM 20B	20: 2-23, 44-46, 51-53
3.1p Spontaneous decay can involve the release of alpha particles, beta particles, positrons, and/or gamma radiation from the nucleus of an unstable isotope. These emissions differ in mass, charge, ionizing power, and penetrating power.	20.2 LM 20B	20: 2-23, 44-46, 51-53
3.1q Matter is classified as a pure substance or as a mixture of substances.	2.1 LM 2A	2: 2-4, 31, 47-48
3.1r A pure substance (element or compound) has a constant composition and constant properties throughout a given sample, and from sample to sample.	2.1, 2.3 LM 2A	2: 2, 4, 12-14, 42, 43, 44, 46
3.1s Mixtures are composed of two or more different substances that can be separated by physical means. When different substances are mixed together, a homogeneous or heterogeneous mixture is formed.	2.3 LM 2A	2: 2-4, 31, 47-48
3.1t The proportions of components in a mixture can be varied. Each component in a mixture retains its original properties.	2.3 LM 2A	2: 2-4, 31, 47-48
3.1u Elements are substances that are composed of atoms that have the same atomic number. Elements cannot be broken down by chemical change.	2.1	2: 2, 4, 12
3.1v Elements can be classified by their properties and located on the Periodic Table as metals,	6.1 LM 6A, 6B	6: 14, 29, 37, 43, 44

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
nonmetals, metalloids (B, Si, Ge, As, Sb, Te), and		
noble gases.		
3.1w Elements can be differentiated by physical	2.1	2: 26, 30
properties. Physical properties of substances, such	LM 6A, 6B	
as density, conductivity, malleability, solubility, and		
hardness, differ among elements.		
3.1x Elements can also be differentiated by	2.1	2: 5, 32-37
chemical properties. Chemical properties describe		,
how an element behaves during a chemical		
reaction.		
3.1y The placement or location of an element on	2.1, 6.2	2: 38, 39
the Periodic Table gives an indication of the physical	,	6: 48, 49
and chemical properties of that element. The		
elements on the Periodic Table are arranged in		
order of increasing atomic number.		
3.1z For Groups 1, 2, and 13-18 on the Periodic	6.2, 6.3	6: 37, 42, 43
Table, elements within the same group have the	LM 6C	
same number of valence electrons (helium is an		
exception) and therefore similar chemical		
properties.		
3.1aa The succession of elements within the same	6.2	6: 25-29, 35, 37,
group demonstrates characteristic trends:		38, 42, 43
differences in atomic radius, ionic radius,		
electronegativity, first ionization energy,		
metallic/nonmetallic properties.		
3.1bb The succession of elements across the same	6.2	6: 25-29, 35, 37,
period demonstrates characteristic trends:		38, 42, 43
differences in atomic radius, ionic radius,		
electronegativity, first ionization energy,		
metallic/nonmetallic properties.		
3.1cc A compound is a substance composed of two	2.2	2: 12, 13, 42, 44,
or more different elements that are chemically	LM 2B	46, 64-67
combined in a fixed proportion. A chemical		
compound can be broken down by chemical means.		
A chemical compound can be represented by a		
specific chemical formula and assigned a name		
based on the IUPAC system.		
3.1dd Compounds can be differentiated by their	2.2	2: 12, 13, 42, 44,
physical and chemical properties.		46, 64-67
3.1ee Types of chemical formulas include empirical,	2.2	2: 42, 44, 46, 64-67
molecular, and structural.	LM 2B	
3.1ff Organic compounds contain carbon atoms,	17.1, 17.2	17: 32-36, 39, 40,
which bond to one another in chains, rings, and		47

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
networks to form a variety of structures. Organic		
compounds can be named using the IUPAC system.		
3.1gg Hydrocarbons are compounds that contain	17.1	17: 32-36
only carbon and hydrogen. Saturated hydrocarbons		
contain only single carbon-carbon bonds.		
Unsaturated hydrocarbons contain at least one		
multiple carbon-carbon bond.		
3.1hh Organic acids, alcohols, esters, aldehydes,	17.2	17: 55-60
ketones, ethers, halides, amines, amides, and amino		
acids are categories of organic compounds that		
differ in their structures. Functional groups impart		
distinctive physical and chemical properties to		
organic compounds.		
3.1ii Isomers of organic compounds have the same	17.1	17: 48-51
molecular formula, but different structures and		
properties.		
3.1jj The structure and arrangement of particles	3.3	3: 22, 24, 31, 33,
and their interactions determine the physical state	LM 3A	48
of a substance at a given temperature and pressure.		
3.1kk The three phases of matter (solids, liquids,	3.3	3: 22, 24, 31, 33,
and gases) have different properties.	LM 3A	48
3.1II Entropy is a measure of the randomness or	9.3	9: 26, 67
disorder of a system. A system with greater disorder		
has greater entropy.		
3.1mm Systems in nature tend to undergo changes	9.3	9: 26, 67
toward lower energy and higher entropy.		
3.1nn Differences in properties such as density,	2.3, 9.3	2: 30-31
particle size, molecular polarity, boiling and freezing	LM 2D, 9A	
points, and solubility permit physical separation of		
the components of the mixture.		
3.100 A solution is a homogeneous mixture of a	9.1	9: 1, 4, 28, 20, 46,
solute dissolved in a solvent. The solubility of a	LM 9A, 9B	47-50, 56-59
solute in a given amount of solvent is dependent on		
the temperature, the pressure, and the chemical		
natures of the solute and solvent.		
3.1pp The concentration of a solution may be	9.2	9: 76-81
expressed in molarity (M), percent by volume,	LM 9A	
percent by mass, or parts per million (ppm).		
3.1qq The addition of a nonvolatile solute to a	9.2	9: 82-87
solvent causes the boiling point of the solvent to		
increase and the freezing point of the solvent to		
decrease. The greater the concentration of solute		
particles, the greater the effect.		

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
3.1rr An electrolyte is a substance which, when	15.5	15: 32, 65, 67-68
dissolved in water, forms a solution capable of		,,
conducting an electric current. The ability of a		
solution to conduct an electric current depends on		
the concentration of ions.		
3.1ss The acidity or alkalinity of an aqueous solution	13.2	13: 35-44
can be measured by its pH value. The relative level	LM 13A	
of acidity or alkalinity of these solutions can be		
shown by using indicators.		
3.1tt On the pH scale, each decrease of one unit of	13.2	13: 35-39
pH represents a ten-fold increase in hydronium ion	LM 13A	
concentration.		
3.1uu Behavior of many acids and bases can be	13.1	13: 1, 4, 7, 26, 27
explained by the Arrhenius theory. Arrhenius acids		
and bases are electrolytes.		
3.1vv Arrhenius acids yield H+(aq), hydrogen ion as	13.1	13: 1, 4, 26, 27
the only positive ion in an aqueous solution. The		
hydrogen ion may also be written as H3O+(aq),		
hydronium ion.		
3.1ww Arrhenius bases yield OH-(aq), hydroxide ion	13.1	13: 26-30
as the only negative ion in an aqueous solution.		
3.1xx In the process of neutralization, an Arrhenius	13.4	13: 15, 52-57
acid and an Arrhenius base react to form a salt and	LM 13B, 13C	
water.		
3.1yy There are alternate acid-base theories. One	13.1	13: 7, 27
theory states that an acid is an H+ donor and a base		
is an H+ acceptor.		
3.1zz Titration is a laboratory process in which a	13.3, 13.4	13: 14, 75-81
volume of a solution of known concentration is used	LM 13B, 13C	
to determine the concentration of another solution.		

3.2 Use atomic and molecular models to explain common chemical reactions.

Major Understandings:

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
3.2a A physical change results in the rearrangement	2.2	2: 5, 32-37
of existing particles in a substance. A chemical		
change results in the formation of different		
substances with changed properties.		
3.2b Types of chemical reactions include synthesis,	10.3	10: 7-14, 39
decomposition, single replacement, and double	LM 10B	
replacement.		
3.2c Types of organic reactions include addition,	17.3	17: 20-31
substitution, polymerization, esterification,		
fermentation, saponification, and combustion.		
3.2d An oxidation-reduction (redox) reaction	15.2	15: 19, 24-26
involves the transfer of electrons (e-).	LM 15C	
3.2e Reduction is the gain of electrons.	15.2	15: 18, 19, 20, 56-
	LM 15C	57
3.2f A half-reaction can be written to represent	15.2	15: 24-26
reduction.	LM 15C, 15D	
3.2g Oxidation is the loss of electrons.	15.2	25: 17, 22, 56-57
3.2h A half-reaction can be written to represent	15.2	15: 24-26
oxidation.	LM 15C, 15D	
3.2i Oxidation numbers (states) can be assigned to	15.2	15: 56-62
atoms and ions. Changes in oxidation numbers		
indicate that oxidation and reduction have		
occurred.		
3.2j An electrochemical cell can be either voltaic or	15.1	15: 65-74
electrolytic. In an electrochemical cell, oxidation	LM 15B	
occurs at the anode and reduction at the cathode.		
3.2k A voltaic cell spontaneously converts chemical	15.1	15: 50-55
energy to electrical energy.	LM 15A	
3.21 An electrolytic cell requires electrical energy to	15.1	15: 44, 65-74
produce a chemical change. This process is known	LM 15D	,
as electrolysis		
	1	

3.3 Apply the principle of conservation of mass to chemical reactions. Major Understandings:

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
3.3a In all chemical reactions there is a	3.2, 10.2, 15.2	3: 14
conservation of mass, energy, and charge.	LM 3C, 10B, 15C	10: 4
		15: 20, 24
3.3b In a redox reaction the number of electrons	15.2	15: 24, 61-64, 84-
lost is equal to the number of electrons gained.		87
3.3c A balanced chemical equation represents	10.2	10: 39, 56-63
conservation of atoms. The coefficients in a		
balanced chemical equation can be used to		
determine mole ratios in the reaction.		
3.3d The empirical formula of a compound is the	8.4	8: 10, 48-50
simplest whole-number ratio of atoms of the	LM 8A	
elements in a compound. It may be different from		
the molecular formula, which is the actual ratio of		
atoms in a molecule of that compound.		
3.3e The formula mass of a substance is the sum of	2.2	2: 13, 43, 44, 46,
the atomic masses of its atoms. The molar mass		64-65
(gram-formula mass) of a substance equals one		
mole of that substance.		
3.3f The percent composition by mass of each	8.4	8: 65-67
element in a compound can be calculated	LM 8A	
mathematically.		

3.4 Use kinetic molecular theory (KMT) to explain rates of reactions and the relationships among temperature, pressure, and volume of a substance.

Major Understandings:

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
3.4a The concept of an ideal gas is a model to	14.2	14: 6, 28-31
explain the behavior of gases. A real gas is most like	LM 14A	
an ideal gas when the real gas is at low pressure and		
high temperature.		
3.4b Kinetic molecular theory (KMT) for an ideal		14: 6, 9-10, 28-31
gas states that all gas particles:		
 are in random, constant, straight-line motion. 		
 are separated by great distances relative to 		
their size; the volume of the gas particles is	14.1, 14.2	
considered negligible.		

 have no attractive forces between them. 		
 have collisions that may result in a transfer of 		
energy between gas particles, but		
the total energy of the system remains constant.		
3.4c Kinetic molecular theory describes the	14.1	14: 4, 9, 10
relationships of pressure, volume, temperature,		
velocity, and frequency and force of collisions		
among gas molecules.		
3.4d Collision theory states that a reaction is most	12.1	12: 29-30
likely to occur if reactant particles collide with the		
proper energy and orientation.		
3.4e Equal volumes of gases at the same	14.2, 14.3	14: 5, 27-31
temperature and pressure contain an equal number		
of particles.		
3.4f The rate of a chemical reaction depends on	12.1	12: 21-24, 26
several factors: temperature, concentration, nature	LM 12A	
of the reactants, surface area, and the presence of a		
catalyst.		
3.4g A catalyst provides an alternate reaction	12.4	12: 53-58
pathway, which has a lower activation energy than	LM 12B	
an uncatalyzed reaction.		
3.4h Some chemical and physical changes can reach	12.2	12: 26-40
equilibrium.	LM 12C	
3.4i At equilibrium the rate of the forward reaction	12.2	12: 26-40
equals the rate of the reverse reaction. The	LM 12C	
measurable quantities of reactants and products		
remain constant at equilibrium.		
3.4j LeChatelier's principle can be used to predict	12.2, 12.3	12: 43-47
the effect of stress (change in pressure, volume,	LM 12C	
concentration, and temperature) on a system at		
equilibrium.		

Key Idea 4: Energy exists in many forms, and when these forms change energy is conserved.

4.1 Observe and describe transmission of various forms of energy. Major Understandings:

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
4.1a Energy can exist in different forms, such as	3.2, 15.1	3: 2, 4
chemical, electrical, electromagnetic, thermal,	LM 3B, 15B	
mechanical, nuclear.		
4.1b Chemical and physical changes can be	4.2	4: 21-22
exothermic or endothermic.	LM 4C	
4.1c Energy released or absorbed during a	12.1	12: 32, 35
chemical reaction can be represented by a potential		
energy diagram.		
4.1d Energy released or absorbed during a chemical	12.1	12: 32, 35
reaction (heat of reaction) is equal to the difference		
between the potential energy of the products and		
potential energy of the reactants.		

4.2 Explain heat in terms of kinetic molecular theory. Major Understandings:

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
4.2a Heat is a transfer of energy (usually thermal	3.2	3: 11, 39-44
energy) from a body of higher temperature to a	LM 3C	
body of lower temperature. Thermal energy is the		
energy associated with the random motion of		
atoms and molecules.		
4.2b Temperature is a measurement of the average	3.1	3: 2, 37-38
kinetic energy of the particles in a sample of	LM 3A	
material. Temperature is not a form of energy.		
4.2c The concepts of kinetic and potential energy	3.3	3: 22-33
can be used to explain physical processes that	LM 3D	
include: fusion (melting), solidification (freezing),		
vaporization (boiling, evaporation), condensation,		
sublimation, and deposition.		

4.4 Explain the benefits and risks of radioactivity. Major Understandings:

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
4.4a Each radioactive isotope has a specific mode	20.2	20: 43-53, 72-81
and rate of decay (half-life).	LM 20B	
4.4b Nuclear reactions include natural and artificial	20.2	20: 57-64
transmutation, fission, and fusion.		
4.4c Nuclear reactions can be represented by	20.1	20: 69, 72-73
equations that include symbols, which represent		
atomic nuclei (with mass number and atomic		
number), subatomic particles (with mass number		
and charge), and/or emissions such as gamma		
radiation.		
4.4d Radioactive isotopes have many beneficial	20.5	20: 55 <i>,</i> 65-68
uses. Radioactive isotopes are used in medicine and		
industrial chemistry for radioactive dating, tracing		
chemical and biological processes, industrial		
measurement, nuclear power, and detection and		
treatment of diseases.		
4.4e There are inherent risks associated with	20.4, 20.5	
radioactivity and the use of radioactive isotopes.		
Risks can include biological exposure, long-term		
storage and disposal, and nuclear accidents.		
4.4f There are benefits and risks associated with	20.4	20: 62-65
fission and fusion reactions.		

Key Idea 5: Energy and matter interact through forces that result in changes in motion.

5.2 Explain chemical bonding in terms of the behavior of electrons. Major Understandings:

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
5.2a Chemical bonds are formed when valence		7: 3-5, 16-25
electrons are:	7.1	
 transferred from one atom to another (ionic) 	LM 7A	
 shared between atoms (covalent) 		
 mobile within a metal (metallic) 		
5.2b Atoms attain a stable valence electron	7.2	6: 10
configuration by bonding with other atoms. Noble	LM 7A	
gases have stable valence configurations and tend		
not to bond.		
5.2c When an atom gains one or more electrons, it	7.2	7: 21-26

C LOCATION WHERE ASSESSED
7: 53-62
7A
7: 48, 58, 61, 62
7B
7: 11, 33-36
7: 3-5, 18, 21-27
4: 21-22
4C
7.1 6: 7
7: 5, 21-22, 26, 32
7: 21-25, 32
7.3 7: 21-25, 29
7B
7.3 7: 3-5, 21-25
1 16: 10-16, 32-26,
1 16: 10-16, 32-26,
55-60, 66-70

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
conductivity, malleability, solubility, hardness,		
melting point, and boiling point.		

5.3 Compare energy relationships within an atom's nucleus to those outside the nucleus. Major Understandings:

NEW YORK CHEMISTRY PERFORMANCE INDICATOR	NAC LOCATION	WHERE ASSESSED
5.3a A change in the nucleus of an atom that	20.2,	Not assessed
converts it from one element to another is called	'transmutation'	
transmutation. This can occur naturally or can be	not mentioned	
induced by the bombardment of the nucleus with	by name	
high-energy particles.		
5.3b Energy released in a nuclear reaction (fission or	20.4	20: 57-64
fusion) comes from the fractional amount of mass		
that is converted into energy. Nuclear changes		
convert matter into energy.		
5.3c Energy released during nuclear reactions is	20.4	20: 57-64
much greater than the energy released during		
chemical reactions.		