

LAB-AIDS CORRELATIONS to KENTUCKY CORE CONTENT

FOR ASSESSMENT v.4.1

HIGH SCHOOL CHEMISTRY¹

A Natural Approach to Chemistry (NAC)² is written by Hsu, Chaniotakis, Carlisle, and Damelin. This correlation is intended to show selected locations in NAC programs that support the standards for high school chemistry.

This document was prepared by Oralia Gil, LAB-AIDS Curriculum Specialist, and Mark Koker, Ph D, Director of Curriculum. This is not an exhaustive document. It is designed to provide a general overview of the alignment of *A Natural Approach to Chemistry* to the state science program standards, grades 9-12, for review and adoption purposes. Support for the state standards may be found at other locations besides those explicitly stated in this document.

For more information about this correlation or for questions about review copies, presentations, or any matters related to sales or service, please contact Kevin Stinson, LAB-AIDS Regional Sales Manager, at 513.900.0642, or by email at <u>kstinson@lab-aids.com</u>, or visit us on the web at <u>www.labaids.com</u>.

¹http://www.kde.state.ky.us/KDE/Instructional+Resources/Curriculum+Documents+and+Resources/Core+Content+for+Assessment/Core+Content+for+Assessment+4.1/

http://www.anaturalapproachtochemistry.com/natc_home.php

The Natural Approach to Chemistry

TUEN 50				
THEMES	4 4 1 1			
Energy is a unifying theme	that explains wh	y chemistry occurs		
The atomic model of matte	r is consistently v	woven through every chapter		
Understanding of 'why' che	emistry occurs is	emphasized		
Principles are illustrated wi	th examples fron	n the human body and the		
environment				
ORGANIZATION OF CON	ORGANIZATION OF CONTENT			
Fundamentals	Chapters 1 -4	Present comprehensive overview of all main ideas in chemistry such as the atomic nature of matter, systems, temperature, and energy.		
		"Big Picture"		
Core Concepts	Chapters 5 - 14	Present in-depth coverage of all major topic areas. They developed usable understanding of the big ideas laid out in the first four chapters. The treatment includes strong conceptual development as well as algebra-based quantitative problem solving.		
		standards for chemistry have been		
		met by the end of Chapter 14.		
Applications	Chapter 15 - 21	Provide deeper exploration of significant areas of interest in chemistry.		
		Examples include rechargeable batteries, materials science, planetary atmospheres, etc.		
COMPLETE LEARNING SYSTEM				
Coordinated student textbook				
Integrated laboratory investigations manual containing 58 labs to choose from				
New laboratory control, data collection and probe system				
Evaluation elements throughout the curriculum (student book and lab investigation manual) through which student knowledge or skills are assessed or applied				

ľ

Correlation Citation Reference Key:

Locations are given in the student book (SB) and/or laboratory manual (LM).

SB 1.2 pp. 19-25

Means Student Book Chapter 1 Section 1.2 pages 19 – 25

LM 1A, 3A-D

Means Lab Investigations Manual Chapter 1 Investigation 1A;

Chapter 3 Investigation 3A, 3B, 3C, 3D

Relevant questions from the student book (SB) and lab manual (LM) problem sets and questions are indicated, e.g.,

1.2 18-30, 51-55

Means Student Book Chapter 1 Section 1.2 questions 18-30 and questions 51-55

Related Core Content for	NAC Location			
Assessment	Student	Lab Manual	Where	
	Book	Location	assessed	
	Location			
Big Idea: Structure and Transformation	on of Matter (P	hysical Science	e) High School	
A basic understanding of matter is esse	ntial to the conc	eptual develop	ment of other big	
ideas in science. By high school, studer	its will be dealin	ig with evidence	e from both direct	
and indirect observations (microscopic l	evel and smalle	r) to consider th	neories related to	
change and conservation of matter. The	use of models	(and an unders	tanding of their	
scales and limitations) is an effective me	eans of learning	about the struc	cture of matter.	
Looking for patterns in properties is also	chical to comp	baring and expla	aming differences	
	Ch 2 nn 38	24-D: 14	Ch 2 30-80	
Students will classify or make	63: Ch 4	27-0, 47	on 67-69 Ch 4	
generalizations about elements from	op 104-125		36-72 pp 129-	
data of observed patterns in atomic	pp.101 120		131	
structure and/or position on the				
periodic table. The periodic table is a				
consequence of the repeating pattern				
of outermost electrons. DOK 2				
SC-HS-1.1.2	Ch. 5	5A-C	Ch. 5, 23-76,	
Students will understand that the	pp.134-159		pp.163-165	
atom's nucleus is composed of				
protons and neutrons that are much				
more massive than electrons. When				
an element has atoms that differ in the				
number of neutrons, these atoms are				
called different isotopes of the				
	Ch 14	144-B· 164-	Ch 1/ 7-79	
Students will understand that solids	nn $442-465$	R	on 468-471 Ch	
liquids and gases differ in the	Ch 16	D	16 38-86	
distances between molecules or	pp.512-529		pp.533-535	
atoms and therefore the energy that	pp:012 020		pp.000 000	
binds them together. In solids, the				
structure is nearly rigid; in liquids,				
molecules or atoms move around				
each other but do not move apart; and				
in gases, molecules or atoms move				
almost independently of each other				
and are relatively far apart. The				
behavior of gases and the relationship				
of the variables influencing them can				
	16.2 ~ 504			
Students will understand that in	10.3 p.521			
conducting materials electrons flow				
conducting matchais, electrons now		1		

Related Core Content for	re Content for NAC Location			
Assessment	Student Book Location	Lab Manual Location	Where assessed	
easily; whereas, in insulating materials, they can hardly flow at all. Semiconducting materials have intermediate behavior. At low temperatures, some materials become superconductors and offer no resistance to the flow of electrons.				
SC-HS-1.1.5 Students will explain the role of intermolecular or intramolecular interactions on the physical properties (solubility, density, polarity, conductivity, boiling/melting points) of compounds. The physical properties of compounds reflect the nature of the interactions among molecules. These interactions are determined by the structure of the molecule including the constituent atoms. DOK 2	Ch.2 pp.38- 63; Ch.4 pp.104-125; Ch. 8 pp.230-253	2A-D; 4A-C; 8A-B	Ch. 2, 30-80, pp.67-69; Ch. 4, 36-72, pp.129- 131; Ch. 8, 20- 77, pp.257-259	
 SC-HS-1.1.6 Students will: identify variables that affect reaction rates; predict effects of changes in variables (concentration, temperature, properties of reactants, surface area and catalysts) based on evidence/data from chemical reactions. Rates of chemical reactions vary. Reaction rates depend on concentration, temperature and properties of reactants. Catalysts speed up chemical reactions. DOK 3 	Ch.7 pp.198- 221; Ch.10, pp.296-317; Ch.11 pp.328-357; Ch.12 pp.368-401	7A-B; 10A- C; 11A-B; 12A-C	Ch. 7, 18-69, pp.224-227; Ch. 10, 30-71, pp.323-325; Ch. 11, 9-69, pp.360-365; Ch. 12, 20-63, pp.405-407	
 SC-HS-1.1.7 Students will: construct diagrams to illustrate ionic or covalent bonding; predict compound formation and bond type as either ionic or covalent (polar, nonpolar) and represent the products formed with simple chemical formulas. Bonds between atoms are created when 	2.2 pp.49- 53; 4.1 pp.109-111	2B	2.2, 41-45, pp.67-68; 4.1, 44-47, p.129 2B (Part 5, 6)	

Related Core Content for	NAC Location			
Assessment	Student	Lab Manual	Where	
	Book	Location	assessed	
	Location			
outer electrons are paired by being				
transferred (ionic) or shared				
(covalent). A compound is formed				
when two or more kinds of atoms bind				
	Ch 0 pp 262	04.0		
Students will	287	9A-C	CII. 9, 20-07,	
explain the importance of	201		pp. 291-295	
chemical reactions in a real-world				
context:				
iustify conclusions using				
evidence/data from chemical				
reactions.				
Chemical reactions (e.g., acids and				
bases, oxidation, combustion of fuels,				
rusting, tarnishing) occur all around us				
and in every cell in our bodies. These				
reactions may release or absorb				
energy. DOK 3	sifuina Concer	ta) Lligh Caha		
Energy transformations are inhorent in a	almost overv sv	stom in the univ	urso from	
tangible examples at the elementary lev	all such as hea	t production in s	simple Farth and	
physical systems to more abstract ideas	s beginning at m	iddle school si	ich as those	
transformations involved in the growth.	dving and decay	v of living system	ms. The use of	
models to illustrate the often invisible ar	id abstract notic	ons of energy tra	ansfer will aid in	
conceptualization, especially as student	s move from the	e macroscopic l	evel of	
observation and evidence (primarily eler	mentary school)	to the microsc	opic interactions	
at the atomic level (middle and high sch	ool levels). Stud	dents in high sc	hool expand their	
understanding of constancy through the	study of a varie	ety of phenome	na. Conceptual	
understanding and application of the lav	vs of thermodyn	iamics connect	ideas about	
matter with energy transformations with	in all living, phys	Sical and Earth	systems.	
SC-HS-4.0.1 Studente will	9.3 p.285		9.3, 81-87,	
• • • • • • • • • • • • • • • • • • •			p.295	
connections between matter energy				
living systems and the physical				
environment.				
give examples of conservation				
of matter and energy. As matter and				
energy flow through different				
organizational levels (e.g., cells,				
organs, organisms, communities) and				
between living systems and the				

Related Core Content for	NAC Location			
Assessment	Student Book Location	Lab Manual Location	Where assessed	
physical environment, chemical elements are recombined in different ways. Each recombination results in storage and dissipation of energy into the environment as heat. Matter and energy are conserved in each change. DOK 3				
 SC-HS-4.6.2 Students will: predict wave behavior and energy transfer; apply knowledge of waves to real life phenomena/investigations. Waves, including sound and seismic waves, waves on water and electromagnetic waves, can transfer energy when they interact with matter. Apparent changes in frequency can provide information about relative motion. DOK 3 	5.2, p.146; 5.4, pp.156- 158	5B-C, 21A	5.2, 68-70, p.165; 5.4, 52- 63, p.164	
 SC-HS-4.6.4 Students will: describe the components and reservoirs involved in biogeochemical cycles (water, nitrogen, carbon dioxide and oxygen); explain the movement of matter and energy in biogeochemical cycles and related phenomena. The total energy of the universe is constant. Energy can change forms and/or be transferred in many ways, but it can neither be created nor destroyed. Movement of matter between reservoirs is driven by Earth's internal and external sources of energy. These movements are often accompanied by a change in physical and chemical properties of the matter. Carbon, for example, occurs in carbonate rocks such as limestone, in the atmosphere as carbon dioxide gas, in water as dissolved carbon dioxide and in all 	Ch.3 pp.72- 95; Ch.18 pp.570-597	3A-D	Ch. 3, 39-84, pp.99-101	

Related Core Content for	NAC Location		
Assessment	Student Book Location	Lab Manual Location	Where assessed
organisms as complex molecules that control the chemistry of life. DOK 3			
SC-HS-4.6.5 Students will describe and explain the role of carbon-containing molecules and chemical reactions in energy transfer in living systems. Living systems require a continuous input of energy to maintain their chemical and physical organization since the universal tendency is toward more disorganized states. The energy for life primarily derives from the Sun. Plants capture energy by absorbing light and using it to break weaker bonds in reactants (such as carbon dioxide and water) in chemical reactions that result in the formation of carbon-containing molecules. These molecules can be used to assemble larger molecules (e.g., DNA, proteins, sugars, fats). In addition, the energy released when these molecules react with oxygen to form very strong bonds can be used as sources of energy for life processes. DOK 3	Ch.17 pp.538-561	17A-B	Ch. 17, 32-83, pp.565-567
SC-HS-4.6.6 Students will understand that heat is the manifestation of the random motion and vibrations of atoms.	Ch.3 pp.72- 95; 9.3 p.285	3A-D	Ch. 3, 39-84, pp.99-101; 9.3, 81-87, p.293
 SC-HS-4.6.10 Students will: identify the components and mechanisms of energy stored and released from food molecules (photosynthesis and respiration); apply information to real-world situations. Energy is released when the bonds of food molecules are broken and new compounds with lower energy bonds are formed. Cells usually store this energy temporarily in the phosphate 	18.2 pp.578- 583		18.2, 60-79, pp.602-603

Related Core Content for	NAC Location		
Assessment	Student Book Location	Lab Manual Location	Where assessed
bonds of adenosine triphosphate (ATP). During the process of cellular respiration, some energy is lost as heat. DOK 3			
 SC-HS-4.6.11 Students will: explain the difference between alpha and beta decay, fission and fusion; identify the relationship between nuclear reactions and energy. Nuclear reactions convert a fraction of the mass of interacting particles into energy, and they can release much greater amounts of energy than atomic interactions. Fission is the splitting of a large nucleus into smaller pieces. Fusion is the joining of two nuclei at extremely high temperature and pressure. Fusion is the process responsible for the energy of the Sun and other stars. DOK 2 	Ch.20 pp.636-657	20А-В	Ch. 20, 40-90, pp.661-663
SC-HS-4.6.12 Students will understand that the forces that hold the nucleus together, at nuclear distances, are usually stronger than the forces that would make it fly apart.	20.4 p.647		