

CORRELATIONS FOR THE PENNSYLVANIA STANDARDS ALIGNED SYSTEM

Grades 10-12 – Chemistry (COURSE 3.2.C.A)

A Natural Approach to Chemistry (NAC) is written by Hsu, Chaniotakis, Carlisle, and Damelin, and is published by, and available exclusively from, LAB-AIDS, Ronkonkoma NY. This correlation is intended to show selected locations in NAC programs that support the Pennsylvania Science Standards for chemistry (http://www.pdesas.org/Standard/StandardsBrowser#25233). It is not an exhaustive list; other locations may exist that are not listed here.

Pennsylvania Assessment Anchors for chemistry are indicated by (A*).

This document was prepared by Mark Koker, Ph D, Director of Curriculum and Training at LAB-AIDS. For more information about this correlation or for questions about review copies, presentations, or any matters related to sales or service, please visit us on the web at <u>www.lab-aids.com</u>.

The Natural Approach to Chemistry				
	••	-		
THEMES				
Energy is a unifying theme that explains why chemistry occurs				
The atomic model of matter	is consistently wow	en through every chapter		
Understanding of 'why' chem	nistry occurs is emp	ohasized		
Principles are illustrated with examples from the human body and the environment				
ORGANIZATION OF CONTENT	Γ			
Fundamentals	Chapters 1 -4	Present comprehensive overview of all main ideas in chemistry such as the atomic nature of matter, systems, temperature, and energy. <i>"Big Picture"</i>		
Core Concepts	Chapters 5 -14	Present in-depth coverage of all major topic areas. They developed usable understanding of the big ideas laid out in the first four chapters. The treatment includes strong conceptual development as well as algebra-based quantitative problem solving. All academic content and instruction standards for chemistry have been met by the end of Chapter 14.		
Applications	Chapter 15 - 21	Provide deeper exploration of significant areas of interest in chemistry. Examples include rechargeable batteries, materials science, planetary atmospheres, etc.		
COMPLETE LEARNING SYSTE	N			
Coordinated student textbook				
Integrated laboratory investigations manual containing 58 labs to choose from				
New laboratory control, data collection and probe system				
Evaluation elements throughout the curriculum (student book and lab investigation manual) through which student knowledge or skills are assessed or applied				

Correlation Citation Reference Key:

Locations are given in the student book (SB) and/or laboratory manual (LM).

SB 1.2 pp. 19-25

Means Student Book Chapter 1 Section 1.2 pages 19 – 25

LM 1A, 3D, 11A: 6, 12A: 6, 12B: 1, 6

Means Lab Investigations Manual Chapter 1 Investigation 1A;

Chapter 3 Investigation 3D;

Chapter 11 Investigation 11A Part 6;

Chapter 12 Investigation 12B Part 1 and Part 6

Relevant questions from the student book (SB) and lab manual (LM) problem sets and questions are indicated, e.g.,

SB 1.2 18-30, 51-55

Means Student Book Chapter 1 Section 1.2 questions 18-30 and questions 51-55

LM 9A Pt 4a-c; 9B Pts 3-5

Means Laboratory Investigations Manual Chapter 9 Investigation 9A Part 4 a-c, Investigation 9B Part 3 – Part 5.

	Location in NAC		
PA Chemistry Standard	Student book	Lab manual	Assessment
3.2.C.A1 Properties and bonding			
Differentiate between physical properties and chemical properties.	2.1, pp. 39-40	2D, 3B, 13A	SB 2.1 , 30, 32- 37, p. 67
 Differentiate between pure substances and mixtures; differentiate between heterogeneous and homogeneous mixtures. 	2.1, p. 38; 2.3, p. 56	2A	SB 2.1 , 1-6, 12-13, 31; p. 66-67
• Explain the relationship of an element's position on the periodic table to its atomic number, ionization energy, electro-negativity, atomic size, and classification of elements.	5.1, pp. 137- 139	5A	SB 5.4 , 16-19, 22, p. 162
 Use electro-negativity to explain the difference between polar and non- polar covalent bonds. 	7.1, p. 198-204	7A	SB 7.2 , 18, 21- 26, p. 224-225
3.2.C.A2 Periodic table, atomic structure, and the mole concept			
 Compare the electron configurations for the first twenty elements of the periodic table. 	5.1, p. 138; 6.1, p. 175 6.2, pp. 177- 182	6A, 6B, 6C	SB 6.3 , 34-38, 43-44, p. 194-195
 Relate the position of an element on the periodic table to its electron configuration and compare its reactivity to the reactivity of other elements in the table. 	6.1, pp. 171- 182	6A, 6B, 6C	SB 6.3 , 34-38, 43-44, p. 194- 195
 Explain how atoms combine to form compounds through both ionic and covalent bonding. 	7.1, p. 198-204	7A	SB 7.2 , 18, 21- 26, p. 224- 225, 43-46, p. 226
• Predict chemical formulas based on the number of valence electrons.	7.2, p. 207-212	7A	SB 7.2 , 3-5, p. 224; 43-46, p. 226

Location in NAC		in NAC		
PA Chemistry Standard	Student book	Lab manual	Assessment	
 Draw Lewis dot structures for simple molecules and ionic compounds. 	7.2, p. 207-217	7A	SB 7.4, 53-62, p. 227	
 Predict the chemical formulas for simple ionic and molecular compounds. 	2.2, pp. 49-50	28	SB 2.2 , 12-18, 42-46, p. 66-68	
 Use the mole concept to determine number of particles and molar mass for elements and compounds. 	2.1, pp. 45-46, 54		SB 2.2 , 12-18, 42-46, p. 66-68	
 Determine percent compositions, empirical formulas, and molecular formulas. 	8.4, pp. 250- 253	8A	SB 8.4 , 48-51, pp 257-258; 65-77, p. 259	
3.2.C.A3 Phases of matter and nuclear chemistry				
 Describe the three normal states of matter in terms of energy, particle motion, and phase transitions. 	1.3, p. 27		SB 1.3, 31-34, 57, pp. 33-34	
 Identify the three main types of radioactive decay and compare their properties. 	20.2, pp. 639- 641	20B	SB 20.2 , 43- 47, 48-53, p. 661-662	
 Describe the process of radioactive decay by using nuclear equations and explain the concept of half-life for an isotope. 	20.2, pp. 639- 641 20.3, pp. 642- 646	20A	SB 20.2 , 43- 47, 48-53, p. 661-662	
a. Compare and contrast nuclear fission and nuclear fusion.	20.2, pp. 637- 641; 20.4, pp. 652-655		SB 20.2 , p. 660; 43-46, 49-50, p. 661	
3.2.C.A4 Chemical changes and stoichiometry				
Predict how combinations of	4.1, p. 104-106	4B, 4C	SB 4.1 , 2, 4,	

	Location in NAC		
PA Chemistry Standard	Student book	Lab manual	Assessment
substances can result in physical and/or chemical changes.			36-38, pp. 128-129
 Interpret and apply the laws of conservation of mass, constant composition (definite proportions), and multiple proportions. 	4.2, p. 115-117		SB 4.2 , 66-72, pp. 130-131
 Balance chemical equations by applying the laws of conservation of mass. 	10.1, p. 298		SB 10.1 , 5-6, p. 322; 29-31, p. 323
 Classify chemical reactions as synthesis (combination), decomposition, single displacement (replacement), double displacement, and combustion. 	10.3, pp. 305- 308	10B	SB 10.3 , 7-14, p. 322
 Use stoichiometry to predict quantitative relationships in a chemical reaction. 	11.1, p. 328- 338 11.4, p. 353- 357		SB 11.1 , 38- 45, p. 362- 363; SB 11.4 , 64-69, p. 364- 365
3.2.C.A5 Atomic structure			
 Recognize discoveries from Dalton (atomic theory), Thomson (the electron), Rutherford (the nucleus), and Bohr (planetary model of atom), and understand how each discovery leads to modern theory. 	5.1, p. 134-135 5.2, p. 144		SB 5.1 , 23, 28, 29-32; p. 163
 Describe Rutherford's "gold foil" experiment that led to the discovery of the nuclear atom. Identify the major components (protons, neutrons, and electrons) of the nuclear atom and explain how they interact. 	5.1, p. 136		SB 5.2 , 32, 37-40, p. 163

	Location		
PA Chemistry Standard	Student book	Lab manual	Assessment
3.2.C.A6 Inquiry and the nature of science			
Compare and contrast scientific theories.	1.2 pp. 19-25 5.1, p. 134-135 5.2, p. 144	1A, 11A, 12A, 12B	SB 5.1 , 23, 28, 29-32; p. 163 LM 1A , Pts 3- 4, p. 2; 11A Pt 6; 12A : Pt 6 p.94; 12B Pts 4, 6 p. 97-98
 Know that direct and indirect observations are used by scientists to study the natural world and universe. 	1.2 pp. 19-25	1A	SB 1.2 18-30, pp. 32-33; 51-55, p. 34; 1.3 57, p. 34
 Identify questions and concepts that guide scientific investigations. 	1.2 pp. 19-25	1A, 11A, 12A, 12B	SB 1.2 18-30, pp. 32-33; 51- 55, p. 34; 1.3 57, p. 34
			LM 1A, Pts 3- 4, p. 2; 11A Pt 6; 12A: Pt 6 p.94; 12B Pts 4, 6 p. 97-98
 Formulate and revise explanations and models using logic and evidence. 	1.2, p. 20, 22; 5.1, pp. 135- 136; 6.1, pp. 171-175; 14.2: p. 454		SB 1.2 18-30, pp. 32-33; 51- 55, p. 34
 Recognize and analyze alternative explanations and models. 	1.2, p. 20, 22; 5.1, pp. 135- 136; 6.1, pp. 171-175; 14.2: p. 454		SB 1.2 18-30, pp. 32-33; 51- 55, p. 34
 Explain the importance of accuracy and precision in making valid measurements. 	1.2, pp. 19-26 5.1, pp. 135- 136		SB 1.2 , 18-30, p. 32; 5.1, 23-25, 26, p. 163
• Examine the status of existing	1.2, pp. 19-26, 30; 2.1, p. 43;		SB 1.2 18-30, pp. 32-33; 51-

	Location in NAC			
PA Chemistry Standard	Student book	Lab manual	Assessment	
theories.	2.2, p. 48; 3.1, p. 72; 5.1 p. 132; 5.2, p. 149; 6.3, p. 189; 7.3, p. 222; 8.4, p. 254; 11.4, p. 359; 18.4, p. 596		55, p. 34; 5.1 & 5.2 23-28, 31-33, 37 p. 163	
• Evaluate experimental information for relevance and adherence to science processes.	1.2, pp. 19-26	14A, 14B	SB 1.2 , 18-30, 54-55, pp. 32-34	
 Judge that conclusions are consistent and logical with experimental conditions. 		3B: 6; 8A: 3; 9B: 6; 11B: 5 & 6; 12B: 6; 13B: 4; 14A: 3	LM 3B: 6e; 8A: 3a-f; 9B: 6 steps 1-4; 11B: 5g, 6d-f; 12B: 6i-j; 13B: 4b; 14A: 3f	
 Interpret results of experimental research to predict new information, propose additional investigable questions, or advance a solution. 	1.2, pp. 22 - 24	5B, 5C, 6C, 10A, 10B, 12B, 13C, 13D, 14A	SB 1.2 , 18-30, 54-55, pp. 32-34	
 Communicate and defend a scientific argument. 	1.2, pp. 19-26	2D, 3A, 5B, 5C, 6C, 9B, 9C, 10A, 12B, 13B	SB 1.2 , 18-30, 51-55, pp. 32-34	
GRADE 11 ASSESSMENT ANCHORS FOR PHYSICAL SCIENCE SHOWN BELOW				
S11.C.1.1.1 Explain that matter is made of particles called atoms and that atoms are composed of even smaller particles (e.g., protons, neutrons, electrons).	5.1, pp. 134- 137	5A	SB 5.1, 23, 29, 30, 32, p. 162	
S11.C.1.1.2 Explain the relationship between the physical properties of a substance and its	2.1, pp. 39-40		SB 2.1, 30-37, p. 67, 14.1 , 7,	

	Location in NAC		
PA Chemistry Standard	Student book	Lab manual	Assessment
molecular or atomic			p. 468
structure.			
S11.C.1.1.3 Explain the formation of compounds(ionic and covalent) and their resulting properties using bonding theories.	7.1, pp. 201- 203		SB 7.1, 16-18, p. 224
S11.C.1.1.4 Explain how the relationships of chemical properties of elements are represented in the repeating patterns within the periodic table.	6.1, pp. 171- 173	6A, 6B	SB 6.1, p. 35, 43, p.194
S11.C.1.1.5 Predict the behavior of gases through the application of laws (e.g., Boyle's law, Charles' law, or ideal gas law).	14.2, pp. 450- 456	14A	SB 14.1, 8, 9, 10, 38-41, pp. 468-469
S11.C.1.1.6 Describe factors that influence the frequency of collisions during chemical reactions that might affect the reaction rates (e.g., surface area, concentration, catalyst, temperature).	12.1, pp. 368- 372	12A, 12B	LM 12B, 6e, 6h