

LAB-AIDS Correlations to Alaska Content Standards

Science Grades 9-11

High School Biology¹

Science and Global Issues: Biology (SGI Biology) was developed by the SEPUP group, at the Lawrence Hall of Science, University of California Berkeley, under the direction of Dr Barbara Nagle, SEPUP Director. Development of *SGI Biology* is supported by grants from the National Science Foundation. *SGI Biology* is published by, and available exclusively from, LAB-AIDS, Ronkonkoma NY, 800.381.8003.

This document was prepared by Oralia Gil, Curriculum Specialst and Mark Koker, Ph D, Director of Curriculum and Training at LAB-AIDS. This is not an exhaustive document. It is designed to provide a general overview of the alignment of *SGI Biology* to the state science program standards, grades 9-12, for review and adoption purposes. Support for the state standards may be found at other locations besides those explicitly stated in this document.

For more information about this correlation or for questions about review copies, presentations, or any matters related to sales or service, please contact our sales associate Dilani Rosa, Regional Sales Manager 925.270.7413, <u>Dilani@LAB-AIDS.com</u>, or visit us on the web at <u>www.lab-aids.com</u>.

¹ http://www.eed.state.ak.us/standards/pdf/standards.pdf

Science in Global Issues Biology Unit Title	Student Book Pages	Issue Focus
Sustainability	1-46	Aspects of sustainability from a personal, community and global perspective
Ecology: Living on Earth	43-154	Sustainability from an ecosystems perspective, with a focus on humans' impacts on ecosystems Making decisions regarding fisheries management
Cell Biology: World Health	155-258	Disparities between developing and developed countries in terms of diseases' impacts on life Making decisions about priorities for diseases that limit social, economic, and environmental progress
Genetics: Feeding the World	259-412	Comparison of selective breeding and genetic modification Use of genetically modified organisms, particularly in the production of agricultural crops
Evolution: Maintaining Diversity	413-512	Conserving genetic, species and ecosystem diversity Ecosystems services and intrinsic value models for conservation

Key to SEPUP Assessment System:

SEPUP materials include research-based assessment system developed by SEPUP and the Berkeley Evaluation and Assessment Research Group (BEAR) in the University of California Graduate School of Education. Forming the core of the SEPUP Assessment System are the **assessment variables** (content and process skills to be assessed), **assessment questions or tasks** used to gather evidence and **scoring guides** for interpreting students' responses (correspond to assessment variables).

The seven assessment variables are:

Designing Investigations (DI) Organizing Data (OD) Analyzing Data (AD) Understanding Concepts (UC) Evidence and Trade-offs (ET) Communication Skills (CS) Group Interaction (GI)

Types of assessment:

Quick Checks () present opportunities for informal formative assessment and may be used prior to instruction to find out what students know or think. They may also be used to help teachers track students' knowledge of key information or progress in understanding a concept.

Some embedded questions and tasks and all item bank questions are all suitable for summative assessment. Analysis questions are included at the end of each activity.

Citations included in the correlation document are as follows:

ECO 5 AQ 1-4 means that the standard or benchmark may be assessed using Ecology Activity 5 Analysis Questions 1-4.

For more information on program assessment and using SEPUP rubrics, consult the Teacher's Guide, TR part IV.

Science Grades 9 – 11

Alaska Science Performance Standards/Grade	SGI Biology Location	Where assessed		
Level Expectations				
A1—Science as Inquiry and Process				
The student demonstrates an understanding of the processes of science by				
[9] SA1.1 asking questions, predicting, observing,	Throughout (e.g. ECO	ECO 1 AQ4		
describing, measuring, classifying, making generalizations,	1. GEN 12)	GEN 12 AO2		
inferring, and communicating*	1, OLN 12)	GEN 12 AQ2		
[9] SA1.2 hypothesizing, designing a controlled	Throughout (e.g. ECO	ECO 1 AQ4		
experiment, making qualitative and quantitative	1: GEN 12)	GEN 12 AO2		
observations, interpreting data, and using this	1, 01.1 12,	0211127102		
information to communicate conclusions				
[10] SA1.1 asking questions, predicting, observing,	Throughout (e.g. ECO	ECO 1 AQ4		
describing, measuring, classifying, making generalizations,	1: GEN 12)	GEN 12 AO2		
analyzing data, developing models, inferring, and	_,,			
communicating				
[10] SA1.2 reviewing pertinent literature, hypothesizing,	Throughout (e.g. GEN	GEN 20 AQ1, 2; EVO		
making qualitative and quantitative observations,	20; EVO 6, ECO 2)	6 AQ2; ECO 2 AQ1-3		
controlling experimental variables, analyzing data		., .		
statistically (i.e., mean, median, mode), and using this				
information to draw conclusions, compare results to				
others, suggest further experimentation, and apply				
student's conclusions to other problems (L)				
[11] SA1.1 asking questions, predicting, observing,	Throughout (e.g. EVO	EVO 5 AQ5		
describing, measuring, classifying, making generalizations,	5; ECO 18-19)	ECO 18 AQ1		
analyzing data, developing models, inferring, and				
[11] SA1.2 recognizing and analyzing multiple	Throughout (e.g. GEN	GEN 16 AQ4		
explanations and models, using this information to revise	16; EVO 6)			
The student demonstrates an understanding of the attitudes as	d approaches to scientific inquir	u hu		
In student demonstrates an understanding of the attitudes an				
[9] SAZ.I TOTHUIALING CONClusions that are logical and	Inrougnout (e.g. EVO	EVO 10 AQ3		
supported by evidence	10; ECO 12	ECO 12 AQ6, 7		
[10] SA2.1 examining methodology and conclusions to	Throughout (e.g. GEN	GEN 18 AQ2		
identify bias and determining if evidence logically	18			
supports the conclusions	-			
[11] SA2.1 evaluating the credibility of cited sources	Throughout			
when conducting the student's own scientific				
investigation (L)				
The student demonstrates an understanding that interactions w	with the environment provide an	opportunity for		
understanding scientific concepts by				
results to solve a problem (a.g., fish and game	Inrougnout (e.g. GEN	GEN 15 AQ2		
results to solve a problem (e.g., fish and game	15; ECO 5; ECO 18-19)	ECO 5 AQ7; ECO 19		
nanagement, building permits, mineral rights, land use		AQ4)		
C1 Concents of Life Science				
CI—Concepts of Life Science				
heredity, the process of natural selection, and biological evolution by				
[9] SC1.1 recognizing that all organisms have	CELL 8	GEN 14 AQ1-3		
chromosomes made of DNA and that DNA determines	GEN 3 12-14			
traits	JLN J, 12-14			
[9] SC1.2 using probabilities to recognize patterns of	GEN 4-6	GEN 4 AQ1-3		
inheritance (e.g., Punnett Squares)				
[9] SC1.3 inferring evolutionary pathways from evidence	EVO 3-5	EVO 3 AQ4; EVO 5		
(e.g., fossils, geologic samples, recorded history)		A04.5		
[10] SC1 2 explaining how the processes of natural	EVO 4 6 10 11			
Lesses of hatural	L V U 4, U, 1U, 11	LVO IU AQIU; EVU		

Alaska Science Performance Standards/Grade	SGI Biology Location	Where assessed		
Level Expectations				
selection can cause speciation and extinction		111 AQ2, 3		
[10] SC1.3 examining issues related to genetics (L)	GEN 1, 6, 7, 11	GEN 6 AQ3; GEN 7		
		AQ6		
[11] SC1.1 relating the structure of DNA to characteristics	GEN 10, 17	GEN 10 AO4: GEN 17		
of an organism		A05		
[11] SC1.2 researching how the processes of natural	FVO / 10 11	FVO 11 AO1		
selection cause changes in species over time (L)				
The student demonstrates an understanding of the structure, function, behavior, development, life cycles, and diversity of				
living organisms by				
[9] SC2.1 describing and comparing the characteristics of	Appendix G	EVO 10 AQ1		
	EVO 7, 10			
[9] SC2.3 stating the function of major physiological	NC			
systems (i.e., circulatory, excretory, digestive, respiratory,				
reproductive, nervous, immune, endocrine,				
[10] SC2 1 describing the structure-function relationship				
(e.g., joints, lungs)	CELL 5-9	CELL 5 AQI, CELL 0		
		AQ4		
[10] SC2.2 explaining that cells have specialized	CELL 3-9	CELL 9 AQ5		
[10] SC2 3 explaining the functions of organs of major	NC			
systems (i.e., respiratory, digestive, circulatory,	INC			
reproductive, nervous, musculoskeletal, and excretory)				
[10] SC2.4 tracing the pathways of the digestive,	NC			
circulatory, and excretory systems				
[11] SC2.1 describing the structure-function relationship*	CELL 5-9	CELL 5 AQ1, CELL 6		
		AQ4		
[11] SC2.2 describing the learned behaviors (e.g., classical	NC			
conditioning, imprinting, trial and error) that are utilized				
by living organisms to meet the requirements of life				
[11] SC2.3 describing the functions and interdependencies of the organs within the immune	NC			
system and within the endocrine system				
The student demonstrates an understanding that all organisms	are linked to each other and the	ir physical environments		
through the transfer and transformation of matter and energy	by	· ·		
[9] SC3.1 describing the carbon and nitrogen cycle within	ECO 8	ECO 8 AQ5		
an ecosystem and how the continual input of energy from				
sunlight keeps the process going (L)	500.0.7	500 0 4 07		
[9] SC3.3 identifying dynamic factors (e.g., carrying	ECO 2-7	ECO 2 AQ7		
that affect nonulation size				
[10] SC3.1 relating the carbon cycle to global climate	FCO 8	FCO 8 ΔΟ4		
change	2000	200 0 / 101		
[10] SC3. 2 exploring ecological relationships (e.g.,	ECO 3, 7, 13	ECO 3 AQ1; ECO 7		
competition, niche, feeding relationships, symbiosis) (L)		AQ5; ECO 13 AQ2		
[11] SC3.1 relating the carbon cycle to global climate	FCO 8	FCO 8 AO4		
change*				
[11] SC3.2 analyzing the potential impacts of changes	ECO 12, 14	ECO 12 AQ4, 5; ECO		
(e.g., climate change, habitat loss/gain, cataclysms,		14 AQ1-3		
numan activities) within an ecosystem				
E1—Science and Technology				
by				
[9] SE1.1 recognizing that the value of any given	GEN 17	GEN 17 AQ6. 7		

Alaska Science Performance Standards/Grade	SGI Biology Location	Where assessed
Level Expectations		
technology may be different for different groups of	CELL 6	CELL 6 AQ3
of show machines in different regions of Alaska)		
[10] SE1 1 identifying that progress in science and		
invention is highly interrelated to what else is hannening	505 1-6	
in society		
[11] SE1.1 researching how social. economic. and political	GEN 18-20	GEN 18 AO4 · GEN 20
forces strongly influence which technology will be	GEN 10 20	
developed and used (L)		AQ4
The student demonstrates an understanding that solving probl	ems involves different ways of th	inking by
[9] SE2.1 questioning, researching, modeling, simulating,	CELL 6. GEN 20	CELL 6 AQ2: GEN 20
and testing a solution to a problem (L)	,	AQ3.4
[10] SE2.1 questioning, researching, modeling, simulating,	CELL 6 GEN 20	CELL 6 ΔΟ2· GEN 20
and testing multiple solutions to a problem (L)	CELE 0, GEN 20	AC2 4
		AQ3, 4
[11] SE2.1 questioning, researching, modeling, simulating,	CELL 6, GEN 20	CELL 6 AQ2; GEN 20
and testing multiple solutions to a problem* (L)		AQ3, 4
The student demonstrates an understanding of how scientific of society by	liscoveries and technological inno	ovations affect our lives and
[9] SE3.1 predicting and evaluating the possible effects of	GEN 19	GEN 19 AQ2
a recent scientific discovery, invention, or scientific		
breakthrough (L)		
[10] SE3.1 researching a current problem, identifying	CELL 8	CELL 8 AQ6
possible solutions, and evaluating the impact of each		
solution (L)		
[11] SE3.1 researching a current problem, identifying	ECO 4	ECO 4 AQ4
possible solutions, and evaluating the impact of each		
solution* (L)		
FI—Cultural, Social, Personal Perspectives, and Sciel	nce	ural cocial and norconal
perspectives by		ural, social, and personal
[9] SF1.1-SF3.1 describing the scientific principles	ECO 5, 14	ECO 5 AQ7; ECO 14
involved in a subsistence activity (e.g., hunting, fishing,		6, 7
gardening) (L). Cross referenced with SA3.1.		
[10] SF1.1-SF3.1 analyzing the competition for resources	ECO 1, 15-17	ECO 1 AQ1; ECO AQ2
by various user groups to describe these		
Interrelationships. Cross referenced with SA3.1.	500 40 40	500 40 400
and/or sultural beliefs on science (1). Cross referenced	ECO 18, 19	ECO 19 AQ3
with SA3 1		
G1—History and Nature of Science		
The student demonstrates an understanding of changes in hist	orical perspectives of science by	
[9] SG1.1 identifying those perspectives (i.e., cultural,		
political, religious, philosophical) that have impacted the	50510	303 3 / 102
advancement of science		
[10] SG1.1 describing how those perspectives (i.e.,	SUS 1-6	SUS 3 AQ2
cultural, political, religious, philosophical) have impacted		
the advancement of science		
The student demonstrates an understanding of the bases of the	e advancement of scientific know	ledge by
[9] SG2.1 explaining the importance of innovations (i.e.,	CELL 6	CELL 6 AQ3
microscope, immunization, computer)		
[10] SG2.1 using an account of an event to recognize the	EVO 4	EVO 4 AQ2
processes of science used by historically significant		
scientists (e.g., Goodall, Watson & Crick, Newton)		
[11] 5G2.1 describing the importance of logical	EVO 9	EVO 9 AQ2

Alaska Science Performance Standards/Grade	SGI Biology Location	Where assessed		
Level Expectations				
arguments (i.e., thought experiments by Einstein,				
Hawking, Newton)				
The student demonstrates an understanding that scientific knowledge is ongoing and subject to change by				
[9] SG3.1 describing the role of serendipity in scientific	NC			
discoveries				
[10] SG3.1 using experimental or observational data to	Throughout			
evaluate a hypothesis	<u> </u>			
[11] SG3.1 investigating instances when scientists'	CELL 15	CELL 15 AQ1-3		
observations were not in accord with prevailing ideas of				
the time (L)				
The student demonstrates an understanding that advancements in science depend on curiosity, creativity, imagination, and				
a broad knowledge base by				
[10] SG4.1 recognizing the role of these factors on	Throughout			
scientific advancements	-			